Adipose tissue transcriptomics and epigenomics in low birthweight men and controls: role of high-fat overfeeding
详细信息    查看全文
  • 作者:Linn Gillberg ; Alexander Perfilyev ; Charlotte Brøns ; Martin Thomasen…
  • 关键词:Diet ; Epigenetics ; Gene expression ; High ; fat overfeeding ; Low birthweight ; Metabolism ; Obesity ; Type 2 diabetes
  • 刊名:Diabetologia
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:59
  • 期:4
  • 页码:799-812
  • 全文大小:642 KB
  • 参考文献:1.Brons C, Jacobsen S, Hiscock N et al (2012) Effects of high-fat overfeeding on mitochondrial function, glucose and fat metabolism, and adipokine levels in low-birth-weight subjects. Am J Physiol Endocrinol Metab 302:E43–E51CrossRef PubMed
    2.Cornier MA, Bergman BC, Bessesen DH (2006) The effects of short-term overfeeding on insulin action in lean and reduced-obese individuals. Metabolism 55:1207–1214CrossRef PubMed
    3.Li Y, Ley SH, Tobias DK et al (2015) Birth weight and later life adherence to unhealthy lifestyles in predicting type 2 diabetes: prospective cohort study. BMJ 351:h3672CrossRef PubMed PubMedCentral
    4.Whincup PH, Kaye SJ, Owen CG et al (2008) Birth weight and risk of type 2 diabetes: a systematic review. JAMA 300:2886–2897CrossRef PubMed
    5.Brons C, Jacobsen S, Nilsson E et al (2010) Deoxyribonucleic acid methylation and gene expression of PPARGC1A in human muscle is influenced by high-fat overfeeding in a birth-weight-dependent manner. J Clin Endocrinol Metab 95:3048–3056CrossRef PubMed
    6.Gillberg L, Jacobsen SC, Ronn T, Brons C, Vaag A (2014) PPARGC1A DNA methylation in subcutaneous adipose tissue in low birth weight subjects—impact of 5 days of high-fat overfeeding. Metabolism 63:263–271CrossRef PubMed
    7.Jacobsen SC, Brons C, Bork-Jensen J et al (2012) Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia 55:3341–3349CrossRef PubMed
    8.Kirchner H, Osler ME, Krook A, Zierath JR (2013) Epigenetic flexibility in metabolic regulation: disease cause and prevention? Trends Cell Biol 23:203–209CrossRef PubMed
    9.Nilsson E, Jansson PA, Perfilyev A et al (2014) Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes 63:2962–2976CrossRef PubMed
    10.Nitert MD, Dayeh T, Volkov P et al (2012) Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes 61:3322–3332CrossRef PubMed PubMedCentral
    11.Ronn T, Volkov P, Davegardh C et al (2013) A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet 9:e1003572CrossRef PubMed PubMedCentral
    12.Ronn T, Volkov P, Gillberg L et al (2015) Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood. Hum Mol Genet 24:3792–3813PubMed
    13.Jacobsen SC, Gillberg L, Bork-Jensen J et al (2014) Young men with low birthweight exhibit decreased plasticity of genome-wide muscle DNA methylation by high-fat overfeeding. Diabetologia 57:1154–1158CrossRef PubMed
    14.Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11:85–97CrossRef PubMed PubMedCentral
    15.Smith U (2002) Impaired (‘diabetic’) insulin signaling and action occur in fat cells long before glucose intolerance—is insulin resistance initiated in the adipose tissue? Int J Obes Relat Metab Disord 26:897–904CrossRef PubMed
    16.Brons C, Jensen CB, Storgaard H et al (2009) Impact of short-term high-fat feeding on glucose and insulin metabolism in young healthy men. J Physiol 587:2387–2397CrossRef PubMed PubMedCentral
    17.Kelley DE, Wing R, Buonocore C, Sturis J, Polonsky K, Fitzsimmons M (1993) Relative effects of calorie restriction and weight loss in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 77:1287–1293PubMed
    18.Alligier M, Meugnier E, Debard C et al (2012) Subcutaneous adipose tissue remodeling during the initial phase of weight gain induced by overfeeding in humans. J Clin Endocrinol Metab 97:E183–E192CrossRef PubMed
    19.Shea J, French CR, Bishop J et al (2009) Changes in the transcriptome of abdominal subcutaneous adipose tissue in response to short-term overfeeding in lean and obese men. Am J Clin Nutr 89:407–415CrossRef PubMed
    20.Rosqvist F, Iggman D, Kullberg J et al (2014) Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes 63:2356–2368CrossRef PubMed
    21.Franck N, Gummesson A, Jernas M et al (2011) Identification of adipocyte genes regulated by caloric intake. J Clin Endocrinol Metab 96:E413–E418CrossRef PubMed
    22.Brons C, Jensen CB, Storgaard H et al (2008) Mitochondrial function in skeletal muscle is normal and unrelated to insulin action in young men born with low birth weight. J Clin Endocrinol Metab 93:3885–3892CrossRef PubMed
    23.Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419CrossRef PubMed
    24.Poulsen P, Grunnet LG, Pilgaard K et al (2009) Increased risk of type 2 diabetes in elderly twins. Diabetes 58:1350–1355CrossRef PubMed PubMedCentral
    25.Irizarry RA, Hobbs B, Collin F et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264CrossRef PubMed
    26.Bibikova M, Barnes B, Tsan C et al (2011) High density DNA methylation array with single CpG site resolution. Genomics 98:288–295CrossRef PubMed
    27.Houseman EA, Molitor J, Marsit CJ (2014) Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics 30:1431–1439CrossRef PubMed PubMedCentral
    28.Leff T, Granneman JH (2010) Adipose tissue in health and disease. Wiley-VCH Verlag, WeinheimCrossRef
    29.Jespersen NZ, Larsen TJ, Peijs L et al (2013) A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab 17:798–805CrossRef PubMed
    30.Melton EM, Cerny RL, Watkins PA, DiRusso CC, Black PN (2011) Human fatty acid transport protein 2a/very long chain acyl-CoA synthetase 1 (FATP2a/Acsvl1) has a preference in mediating the channeling of exogenous n-3 fatty acids into phosphatidylinositol. J Biol Chem 286:30670–30679CrossRef PubMed PubMedCentral
    31.Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492CrossRef PubMed
    32.Pilgaard K, Faerch K, Carstensen B et al (2010) Low birthweight and premature birth are both associated with type 2 diabetes in a random sample of middle-aged Danes. Diabetologia 53:2526–2530CrossRef PubMed
    33.Yao M, Li J, Xie T et al (2015) Polymorphisms of rs174616 in the FADS1-FADS2 gene cluster is associated with a reduced risk of type 2 diabetes mellitus in northern Han Chinese people. Diabetes Res Clin Pract 109:206–212CrossRef PubMed
    34.Abderrahmani A, Niederhauser G, Plaisance V et al (2004) Complexin I regulates glucose-induced secretion in pancreatic beta-cells. J Cell Sci 117:2239–2247CrossRef PubMed
    35.Markan KR, Jurczak MJ, Allison MB et al (2010) Enhanced glycogen metabolism in adipose tissue decreases triglycerideride mobilization. Am J Physiol Endocrinol Metab 299:E117–E125CrossRef PubMed PubMedCentral
    36.Virtue S, Vidal-Puig A (2010) Adipose tissue expandability, lipotoxicity and the metabolic syndrome—an allostatic perspective. Biochim Biophys Acta 1801:338–349CrossRef PubMed
    37.Melton EM, Cerny RL, DiRusso CC, Black PN (2013) Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids. Biochem Biophys Res Commun 440:743–748CrossRef PubMed PubMedCentral
    38.Lappas M (2014) Effect of pre-existing maternal obesity, gestational diabetes and adipokines on the expression of genes involved in lipid metabolism in adipose tissue. Metabolism 63:250–262CrossRef PubMed
    39.Soronen J, Laurila PP, Naukkarinen J et al (2012) Adipose tissue gene expression analysis reveals changes in inflammatory, mitochondrial respiratory and lipid metabolic pathways in obese insulin-resistant subjects. BMC Med Genomics 5:9CrossRef PubMed PubMedCentral
    40.Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7:85–96CrossRef PubMed
    41.Mootha VK, Lindgren CM, Eriksson KF et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273CrossRef PubMed
    42.Olsson AH, Yang BT, Hall E et al (2011) Decreased expression of genes involved in oxidative phosphorylation in human pancreatic islets from patients with type 2 diabetes. Eur J Endocrinol 165:589–595CrossRef PubMed PubMedCentral
    43.Choi JH, Banks AS, Estall JL et al (2010) Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature 466:451–456CrossRef PubMed PubMedCentral
    44.Kouidhi S, Berrhouma R, Rouissi K et al (2013) Human subcutaneous adipose tissue Glut 4 mRNA expression in obesity and type 2 diabetes. Acta Diabetol 50:227–232CrossRef PubMed
  • 作者单位:Linn Gillberg (1) (2)
    Alexander Perfilyev (3)
    Charlotte Brøns (1)
    Martin Thomasen (1)
    Louise G. Grunnet (1)
    Petr Volkov (3)
    Fredrik Rosqvist (4)
    David Iggman (4) (5)
    Ingrid Dahlman (6)
    Ulf Risérus (4)
    Tina Rönn (3)
    Emma Nilsson (1) (3)
    Allan Vaag (1) (2)
    Charlotte Ling (3)

    1. Department of Endocrinology, Rigshospitalet, Section 7652, Tagensvej 20, DK-2200, Copenhagen N, Denmark
    2. Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    3. Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University, Jan Waldenströms gata 35, SE-20502, Malmö, Sweden
    4. Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
    5. Center for Clinical Research Dalarna, Falun, Sweden
    6. Department of Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Internal Medicine
    Metabolic Diseases
    Human Physiology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0428
文摘
Aims/hypothesis Individuals who had a low birthweight (LBW) are at an increased risk of insulin resistance and type 2 diabetes when exposed to high-fat overfeeding (HFO). We studied genome-wide mRNA expression and DNA methylation in subcutaneous adipose tissue (SAT) after 5 days of HFO and after a control diet in 40 young men, of whom 16 had LBW.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700