Lava flow mapping and volume calculations for the 2012-013 Tolbachik, Kamchatka, fissure eruption using bistatic TanDEM-X InSAR
详细信息    查看全文
  • 作者:Julia Kubanek ; Jacob A. Richardson ; Sylvain J. Charbonnier…
  • 关键词:Tolbachik 2012-013 fissure eruption ; Kamchatka ; InSAR ; TanDEM ; X ; Lava flows ; Numerical modeling
  • 刊名:Bulletin of Volcanology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:77
  • 期:12
  • 全文大小:5,912 KB
  • 参考文献:Albino F, Smets B, d’Oreye N, Kervyn F (2015) High-resolution TanDEM-X DEM: an accurate method to estimate lava flow volumes at Nyamulagira Volcano (D. R. Congo). J Geophys Res 120:4189-207. doi:10.-002/-015JB011988 CrossRef
    Belousov A, Belousova M, Ewards B, Volynets A, Melnikov D (2015) Overview of the precursors and dynamics of the 2012-3 basaltic fissure eruption of Tolbachik Volcano, Kamchatka, Russia. J Volcanol Geotherm Res 299:19-4. doi:10.-016/?j.?jvolgeores.-015.-4.-09 CrossRef
    Bignami C, Ruch J, Chini M, Neri M, Buongiorno MF, Hidayati S, Sayudi DS, Surono (2013) Pyroclastic density current volume estimation after the 2010 Merapi Volcano eruption using X-band SAR. J Volcanol Geotherm Res 261:236-43. doi:10.-016/?j.?jvolgeores.-013.-3.-23 CrossRef
    Calvari S, Neri M, Pinkerton H (2003) Effusion rate estimations during the 1999 summit eruption on Mount Etna, and growth of two distinct lava flow fields. J Volcanol Geotherm Res 119:107-23. doi:10.-016/?S0377-0273(02)00308-6 CrossRef
    Chen CW, Zebker HA (2001) Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J Opt Soc Am A 18:338-51. doi:10.-364/?JOSAA.-8.-00338 CrossRef
    Connor LJ, Connor CB, Meliksetian K, Savov I (2012) Probabilistic approach to modeling lava flow inundation: a lava flow hazard assessment for a nuclear facility in Armenia. J Appl Volcanol 1:1-9. doi:10.-186/-191-5040-1-3 CrossRef
    Costa A, Macedonio G (2005) Computational modeling of lava flows: a review. Geol Soc Am Spec Pap 396:209-18. doi:10.-130/--8137-2396-5.-09
    Crisci G, Rongo R, Di Gregorio S, Spataro W (2004) The simulation model SCIARA: the 1991 and 2001 lava flows at Etna. J Volcanol Geotherm Res 132:253-67. doi:10.-016/-S0377-0273(03)00349-4 CrossRef
    Diefenbach AK, Crider JG, Schilling SP, Dzurisin D (2012) Rapid, low-cost photogrammetry to monitor volcanic eruptions: an example from Mount St. Helens, Washington, USA. Bull Volcanol 74:579-87. doi:10.-007/?s00445-011-0548-y CrossRef
    Diefenbach AK, Bull KF, Wessels RL, McGimsey RG (2013) Photogrammetric monitoring of lava dome growth during the 2009 eruption of Redoubt Volcano. J Volcanol Geotherm Res 259:308-16. doi:10.-016/?j.?jvolgeores.-011.-2.-09 CrossRef
    Duque S, Balss U, Rossi C, Fritz T, Balzer W (2012) TanDEM-X payload ground segment. CoSSC generation and interferometric considerations. Remote Sensing Technology Institute, TD-PGS-TN-3129
    Dvigalo VN, Svirid IY, Shevshenko AV (2014) The first quantitative estimates of parameters for the Tolbachik fissure eruption of 2012-013 from aerophotogrammetric observations. J Volcanol Seismol 8-:261-68. doi:10.-134/?S074204631405002-
    Ebmeier SK, Biggs J, Mather TA, Elliott JR, Wadge G, Amelung F (2012) Measuring large topographic change with InSAR: lava thicknesses, extrusion rate and subsidence rate at Santiaguito Volcano, Guatemala. Earth Planet Sci Lett 335-36:216-25. doi:10.-016/?j.?epsl.-012.-4.-27 CrossRef
    Fedotov SA, Chirkov AM, Kovalev GN, Slezin YB (1980) The large fissure eruption in the region of Plosky Tolbachik Volcano in Kamchatka, 1975-976. Bull Volcanol 43-:47-0. doi:10.-007/?BF02597610 CrossRef
    Ferretti A, Monti-Guarnieri A, Prati C, Rocca F, Massonnet D (2007) InSAR principles: guidelines for SAR. Interferometry processing and interpretation. ESA Publications, ESTEC, The Netherlands, Part A
    Fujita E, Hidaka M, Goto A, Umino S (2009) Simulations of measures to control lava flows. Bull Volcanol 71:401-08. doi:10.-007/?s00445-008-0229-7 CrossRef
    Global Volcanism Program Tolbachik Summary and Monthly Reports: http://?www.?volcano.?si.?edu/?volcano.?cfm??vn=-00240 . Smithsonian Institution Accessed 24 June 2014
    Harris AJL (2013) Lava flows. In: Fagents SA, Gregg TKP, Lopes RMC (eds) Modeling volcanic processes. Cambridge University Press, Cambridge, 421
    Harris AJL, Dehn J, Calvari S (2007) Lava effusion rate definition and measurement: a review. Bull Volcanol 70:1-2. doi:10.-007/?s00445-007-0120-y CrossRef
    Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31:L23611. doi:10.-029/-004GL021737 CrossRef
    James MR, Varley N (2012) Identification of structural controls in an active lava dome with high resolution DEMs: Volcán de Colima, Mexico. Geophys Res Lett 39:L22303. doi:10.-029/-012GL054245 CrossRef
    Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT), Available from http://?srtm.?csi.?cgiar.?org
    Kamchatka Volcanic Eruption Response Team (2013) VONA/KVERT daily report. Accessed 24 June 2014
    Kampes BM, Hanssen RF, Perski Z (2003) Radar interferometry with public domain tools. Proceedings of the Third International Workshop on ERS SAR Interferometry (FRINGE), F
  • 作者单位:Julia Kubanek (1)
    Jacob A. Richardson (2)
    Sylvain J. Charbonnier (2)
    Laura J. Connor (2)

    1. Geodetic Institute, Karlsruhe Institute of Technology, Englerstrasse 7, 76131, Karlsruhe, Germany
    2. School of Geosciences, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
  • 刊物主题:Geology; Geophysics/Geodesy; Mineralogy; Sedimentology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-0819
文摘
The bistatic acquisition mode of the German TanDEM-X radar satellite mission provides a reliable source for measuring morphological changes associated with volcanic activity. We present the use of this system to measure key lava flow parameters including thickness, volume, runout, and flow extent by using two TanDEM-X data pairs to generate digital elevation models (DEMs) prior to and immediately following the 2012-013 eruption of Tolbachik Volcano, Kamchatka. Morphometric parameters and areal distribution of the new lava flow field are determined using a cell-by-cell elevation difference between the two DEMs. A total flow volume of 0.53?±-.07 km3, a mean flow thickness of 14.5 m, and a modal thickness of 7.8 m are calculated. We use these calculated flow parameters as input to a volume-limited lava flow emplacement model. Model simulations are able to reproduce the SW portion of the 2012-013 Tolbachik lava flow using a 75-m Shuttle Radar Topography Mission (SRTM) DEM and the 15-m TanDEM-X derived DEM, with goodness-of-fit measures of 56.3 and 59.6 %, respectively, based on the Jaccard similarity coefficient. The flow simulation done using SRTM data underestimates the observed 14.4 km flow runout by over 3 km, while the simulation with TanDEM-X data overestimates flow runout by about 1.5 km. Performance of the lava flow modeling algorithm is highly dependent on the modal lava thickness, highlighting the importance of using TanDEM-X DEMs to provide precise lava flow measurements in order to constrain input parameters for numerical modeling of lava flows. Keywords Tolbachik 2012-013 fissure eruption Kamchatka InSAR TanDEM-X Lava flows Numerical modeling

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700