Anthocyanins and phenolic acids from a wild blueberry (Vaccinium angustifolium) powder counteract lipid accumulation in THP-1-derived macrophages
详细信息    查看全文
  • 作者:Cristian Del Bo’ ; Yi Cao ; Martin Roursgaard ; Patrizia Riso…
  • 关键词:Wild blueberry ; Polyphenols ; THP ; 1 macrophages ; Lipid accumulation
  • 刊名:European Journal of Nutrition
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:55
  • 期:1
  • 页码:171-182
  • 全文大小:1,006 KB
  • 参考文献:1.Nicoué EE, Savard S, Belkacemi K (2007) Anthocyanins in wild blueberries of Quebec: extraction and identification. J Agric Food Chem 55:5626–5635CrossRef
    2.Veitch NC, Grayer RJ (2011) Flavonoids and their glycosides, including anthocyanins. Nat Prod Rep 28:1626–1695CrossRef
    3.Andersen OM, Jordheim M (2006) In: Andersen OM, Markham KR (eds) Flavonoids chemistry, biochemistry and applications. CRC Press, Taylor and Francis, Boca Raton, pp 471–551
    4.McGhie TK, Walton MC (2007) The bioavailability and absorption of anthocyanins: towards a better understanding. Mol Nutr Food Res 51:702–713CrossRef
    5.Tsuda T (2012) Dietary anthocyanin-rich plants: biochemical basis and recent progress in health benefits studies. Mol Nutr Food Res 56:159–170CrossRef
    6.Speciale A, Cimino F, Saija A, Canali R, Virgili F (2014) Bioavailability and molecular activities of anthocyanins as modulators of endothelial function. Genes Nutr 9:404CrossRef
    7.Jennings A, Welch AA, Fairweather-Tait SJ, Kay C, Minihane AM, Chowienczyk P, Jiang B, Cecelja M, Spector T, Macgregor A, Cassidy A (2012) Higher anthocyanin intake is associated with lower arterial stiffness and central blood pressure in women. Am J Clin Nutr 96:781–788CrossRef
    8.Miguel MG (2011) Anthocyanins: antioxidants and/or anti-inflammatory activities. JAPS 1:07–15
    9.Wu T, Tang Q, Gao Z, Yu Z, Song H, Zheng X, Chen W (2013) Blueberry and mulberry juice prevent obesity development in C57BL/6 mice. Plos One 8:e77585CrossRef
    10.Chang JJ, Hsu MJ, Huang HP, Chung DJ, Chang YC, Wang CJ (2013) Mulberry anthocyanins inhibit oleic acid induced lipid accumulation by reduction of lipogenesis and promotion of hepatic lipid clearance. J Agric Food Chem 61:6069–6076CrossRef
    11.Valenti L, Riso P, Mazzocchi A, Porrini M, Fargion S, Agostoni C (2013) Dietary anthocyanins as nutritional therapy for non alcoholic fatty liver disease. Oxid Med Cell Longev 2013:145421CrossRef
    12.Jia Y, Hoang MH, Jun HJ, Lee JH, Lee SJ (2013) Cyanidin, a natural flavonoid, is an agonistic ligand for liver X receptor alpha and beta and reduces cellular lipid accumulation in macrophages and hepatocytes. Bioorg Med Chem Lett 23:4185–4190CrossRef
    13.Packard RR, Libby P (2008) Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem 54:24–38CrossRef
    14.Chen J, Uto T, Tanigawa S, Kumamoto T, Fujii M, Hou DX (2008) Expression profiling of genes targeted by bilberry (Vaccinium myrtillus) in macrophages through DNA microarray. Nutr Cancer 60(Suppl 1):43–50CrossRef
    15.Mauray A, Felgines C, Morand C, Mazur A, Scalbert A, Milenkovic D (2010) Nutrigenomic analysis of the protective effects of bilberry anthocyanin-rich extract in apo E-deficient mice. Genes Nutr 5:343–353CrossRef
    16.Wu X, Kang J, Xie C, Burris R, Ferguson ME, Badger TM, Nagarajan S (2010) Dietary blueberries attenuate atherosclerosis in apolipoprotein E-deficient mice by upregulating antioxidant enzyme expression. J Nutr 140:1628–1632CrossRef
    17.Zanotti I, Dall’Asta M, Mena P, Mele L, Bruni R, Ray S, Del Rio D (2014) Atheroprotective effects of (poly) phenols: a focus on cell cholesterol metabolism. Food Funct. doi:10.​1039/​c4fo00670d
    18.Manach C, Williamson G, Morand C, Scalbert A, Rémésv C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81(1 Suppl):230S–242S
    19.Faria A, Fernandes I, Norberto S, Mateus N, Calhau C (2014) Interplay between anthocyanins and gut microbiota. J Agric Food Chem 62:6898–6902CrossRef
    20.Czank C, Cassidy A, Zhang Q, Morrison DJ, Preston T, Kroon PA, Botting NP, Kay CD (2013) Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a13C-tracer study. Am J Clin Nutr 97:995–1003CrossRef
    21.Kay DC, Kroon PA, Cassidy A (2009) The bioactivity of dietary anthocyanins is likely to be mediated by their degradation products. Mol Nutr Food Res 53:S92–S101CrossRef
    22.Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747
    23.Rodriguez-Mateos A, Vauzour D, Krueger CG, Shanmuganayagam D, Reed J, Calani L, Mena P, Del Rio D, Crozier A (2014) Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch Toxicol 88:1803–1853CrossRef
    24.Kroon PA, Clifford MN, Crozier A, Day AJ, Donovan JL, Manach C, Williamson G (2004) How should we assess the effects of exposure to dietary polyphenols in vitro? Am J Clin Nutr 80:15–21
    25.Wrolstad RE, Acree TE, Decker EA, Penner MH, Reid DS, Schwartz SJ, Shoemaker SF, Smith DM, Sporns P (2005) Handbook of analytical chemistry: pigments, colorants, flavor, texture and bioactive food components, vol 2. Wiley, New Jersey, pp 473–475
    26.Del Bo’ C, Ciappellano S, Klimi-Zacas D, Martini D, Gardana C, Riso P, Porrini M (2010) Anthocyanins adsorption, metabolism, and distribution from a wild-blueberry-enriched diet (Vaccinium angustifolium) is affected by diet duration in the Sprague-Dawley rat. J Agric Food Chem 58:2494–2497
    27.Taverniti V, Fracassetti D, Del Bo’ C, Lanti C, Minuzzo M, Klimis-Zacas D, Riso P, Guglielmetti S (2014) Immunomodulatory effect of a wild blueberry anthocyanin-rich extract in human Caco-2 intestinal cells. J Agric Food Chem 62:8346–8351CrossRef
    28.Riso P, Brusamolino A, Moro M, Porrini M (2009) Absorption of bioactive compounds from steamed broccoli and their effect on plasma glutathione S-transferase activity. Int J Food Sci Nutr 60(Suppl 1):56–71CrossRef
    29.Guarnieri S, Riso P, Porrini M (2007) Orange juice vs vitamin C: effect on hydrogen peroxide-induced DNA damage in mononuclear blood cells. Br J Nutr 97:639–643CrossRef
    30.Simonetti P, Ciappellano S, Gardana C, Bramati L, Pietta P (2002) Procyanidins from Vitis vinifera seeds: in vivo effects on oxidative stress. J Agric Food Chem 50:6217–6221CrossRef
    31. AOAC Method 991.43 (1995) Total, insoluble and soluble dietary fiber in food-enzymatic-gravimetric method, MES-TRIS buffer. Official methods of analysis, 16th edn. AOAC International, Gaithersburg
    32.Del Bo’ C, Riso P, Brambilla A, Gardana C, Rizzolo A, Simonetti P, Bertolo G, Klimis-Zacas D, Porrini M (2012) Blanching improves anthocyanin absorption from highbush blueberry (Vaccinium corymbosum L.) purée in healthy human volunteers: a pilot study. J Agric Food Chem 60:9298–9304CrossRef
    33.Cao Y, Roursgaard M, Kermanizadeh A, Loft S, Møller P (2014) Synergistic effects of zinc oxide nanoparticles and fatty acids on toxicity to Caco-2 cells. Int J Toxicol. doi:10.​1177/​1091581814560032​
    34.Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K (1980) Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer 26:171–176CrossRef
    35.Traore K, Trush MA, George M, Spannhake EW, Anderson W, Asseffa A (2005) Signal transduction of phorbol 12-myristate 13-acetate (PMA)-induced growth inhibition of human monocytic leukemia THP-1 cells is reactive oxygen dependent. Leuk Res 29:863–879CrossRef
    36.Johnson AC, Yabu JM, Hanson S, Shah VO, Zager RA (2003) Experimental glomerulopathy alters renal cortical cholesterol, SRB1, ABCA1, and HMG CoA, reductase expression. Am J Pathol 162:283–291CrossRef
    37.Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11:127–152CrossRef
    38.Vesterdal LK, Danielsen PH, Folkmann JK, Jespersen LF, Aguilar-Pelaez K, Roursgaard M, Loft S, Møller P (2014) Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles. Toxicol Appl Pharmacol 274:350–360CrossRef
    39.Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145:341–355CrossRef
    40.Quiňones M, Miguel M, Aleixandre A (2013) Beneficial effects of polyphenols on cardiovascular disease. Pharmacol Res 68:125–131CrossRef
    41.Wallace TC (2011) Anthocyanins in cardiovascular disease. Adv Nutr 2:1–7CrossRef
    42.Niculescu LS, Sanda GM, Simionescu N, Sima AV (2014) Bilberries exert an anti-atherosclerotic effect in lipid-loaded macrophages. CEJB 9:268–276
    43.Chang JJ, Hsu MJ, Huang HP, Chung DJ, Chang YC, Wang CJ (2013) Mulberry anthocyanins inhibit oleic acid induced lipid accumulation by reduction of lipogenesis and promotion of hepatic lipid clearance. J Agric Food Chem 61:6069–6076CrossRef
    44.Hwang YP, Choi JH, Han EH, Kim HG, Wee JH, Jung KO, Jung KH, Kwon KI, Jeong TC, Chung YC, Jeong HG (2011) Purple sweet potato anthocyanins attenuate hepatic lipid accumulation through activating adenosine monophosphate-activated protein kinase in human HepG2 cells and obese mice. Nutr Res 31:896–906CrossRef
    45.Kim HK, Kim JN, Han SN, Nam JH, Na HN, Ha TJ (2012) Black soybean anthocyanins inhibit adipocyte differentiation in 3T3-L1 cells. Nutr Res 32:770–777CrossRef
    46.Prior RL, Wu X (2006) Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities. Free Rad Res 40:1014–1028CrossRef
    47.Vendrame S, Daugherty A, Kristo AS, Klimis-Zacas D (2014) Wild blueberry (Vaccinium angustifolium)-enriched diet improves dyslipidaemia and modulates the expression of genes related to lipid metabolism in obese Zucker rats. Br J Nutr 111:194–200CrossRef
    48.Titta L, Trinei M, Stendardo M, Berniakovich I, Petroni K, Tonelli C, Riso P, Porrini M, Minucci S, Pelicci PG, Rapisarda P, Recupero GR, Giorgio M (2010) Blood orange juice inhibits fat accumulation in mice. Int J Obes (Lond) 34:578–588CrossRef
    49.Cho AS, Jeon SM, Kim MJ, Yeo J, Seo KI, Choi MS, Lee MK (2010) Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem Toxicol 48:937–943CrossRef
    50.Guo H, Guo J, Jiang X, Li Z, Ling W (2012) Cyanidin-3-O-β-glucoside, a typical anthocyanin, exhibits antilipolytic effects in 3T3-L1 adipocytes during hyperglycemia: involvement of FoxO1-mediated transcription of adipose tryglyceride lipase. Food Chem Toxicol 50:3040–3047CrossRef
    51.Guo H, Liu G, Zhong R, Wang Y, Wang D, Xia M (2012) Cyanidin-3-O-β-glucoside regulates fatty acid metabolism via an AMP-activated protein kinase-dependent signaling pathway in human HepG2 cells. Lipids Health Dis 11:10CrossRef
    52.Tsuda T, Horio F, Uchida K, Aoki H, Osawa T (2003) Dietary cyanidin 3-O-beta-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J Nutr 133:2125–2130
    53.Speciale A, Chirafisi J, Saija A, Cimino F (2011) Nutritional antioxidants and adaptive cell responses: an update. Curr Mol Med 11:770–789CrossRef
    54.Chen J, Tao X, Zhang M, Sun A, Zhao L (2014) Properties and stability of blueberry anthocyanin–bovine serum albumin nanoparticles. J Sci Food Agric 94:1781–1786CrossRef
    55.Cao Y, Roursgaard M, Danielsen PH, Møller P, Loft S (2014) Carbon black nanoparticles promote endothelial activation and lipid accumulation in macrophages independently of intracellular ROS production. PLoS ONE 9:e106711CrossRef
    56.Cao Y, Jacobsen NR, Danielsen PH, Lenz AG, Stoeger T, Loft S, Wallin H, Roursgaard M, Mikkelsen L, Møller P (2014) Vascular effects of multiwalled carbon nanotubes in dyslipidemic ApoE-/-mice and cultured endothelial cells. Toxicol Sci 138:104–116CrossRef
  • 作者单位:Cristian Del Bo’ (1)
    Yi Cao (2)
    Martin Roursgaard (2)
    Patrizia Riso (1)
    Marisa Porrini (1)
    Steffen Loft (2)
    Peter Møller (2)

    1. Department of Food, Environmental and Nutritional Sciences–Division of Human Nutrition, Università degli Studi di Milano, Milan, Italy
    2. Department of Public Health, University of Copenhagen, Copenhagen, Denmark
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nutrition
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1436-6215
文摘
Purpose Blueberries are a rich source of anthocyanins (ACNs) and phenolic acids (PA), which are hypothesized to protect against development of atherosclerosis. The present study examined the effect of an ACN- and PA-rich fractions, obtained from a wild blueberry powder, on the capacity to counteract lipid accumulation in macrophages derived from monocytic THP-1 cells. In addition, we tested the capacity of pure ACNs and their metabolites to alter lipid accumulation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700