Interaction of Curcumin with Manganese May Compromise Metal and Neurotransmitter Homeostasis in the Hippocampus of Young Mice
详细信息    查看全文
  • 作者:Ariana Ern Schmitz (1)
    Paulo Alexandre de Oliveira (2)
    Luiz F. de Souza (1)
    Danilo Grünig Humberto da Silva (3)
    Samara Danielski (1)
    Danúbia Bonfanti Santos (1)
    Eduardo Alves de Almeida (3)
    Rui Daniel Prediger (2)
    Andrew Fisher (4)
    Marcelo Farina (1)
    Alcir Luiz Dafre (1)
  • 关键词:Manganese ; Curcumin ; Idiopathic Parkinson disease ; Memory ; Motor performance
  • 刊名:Biological Trace Element Research
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:158
  • 期:3
  • 页码:399-409
  • 全文大小:
  • 参考文献:1. Rivera-Mancía S, Ríos C, Montes S (2011) Manganese accumulation in the CNS and associated pathologies. Biometals 24:811-25 CrossRef
    2. Agency for Toxic Substances and Disease Registry (ATSDR) (2012) Toxicological profile for Manganese. U.S. Department of Health and Human Services, Public Health Service, Atlanta
    3. Santamaria AB, Cushing CA, Antonini JM, Finley BL, Mowat FS (2007) State-of-the-science review: does manganese exposure during welding pose a neurological risk? J Toxicol Environ Health B Crit Rev 10:417-65 CrossRef
    4. World Health Organization (WHO) (2000) Air quality guidelines for Europe. IOP Publishing PhysicsWeb. http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/pre2009/air-quality-guidelines-for-europe. Accessed 20 Jan 2014
    5. Aschner JL, Aschner M (2005) Nutritional aspects of manganese homeostasis. Mol Aspects Med 26:353-62 CrossRef
    6. Keen CL, Ensunsa JL, Clegg MS (2000) Manganese metabolism in animals and humans including the toxicity of manganese. Met Ions Biol Syst 37:89-21
    7. Pace TG, Frank NH (1984) Procedures for estimating probability of nonattainment of a PM10 NAAQS using total suspended particulate or inhalable particulate data. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Monitoring and Data Analysis Division, Washington, DC
    8. Aschner M, Erikson KM, Dorman DC (2005) Manganese dosimetry: species differences and implications for neurotoxicity. Crit Rev Toxicol 35:1-2 CrossRef
    9. Barbeau A (1984) Manganese and extrapyramidal disorders (a critical review and tribute to Dr. George C. Cotzias). Neurotoxicology 5:13-5
    10. Calne DB, Chu NS, Huang CC, Lu CS, Olanow W (1994) Manganism and idiopathic parkinsonism: similarities and differences. Neurology 44:1583-586 CrossRef
    11. Martin CJ (2006) Manganese neurotoxicity: connecting the dots along the continuum of dysfunction. Neurotoxicology 27:347-49 CrossRef
    12. Normandin L, Ann Beaupré L, Salehi F, St -Pierre A, Kennedy G, Mergler D et al (2004) Manganese distribution in the brain and neurobehavioral changes following inhalation exposure of rats to three chemical forms of manganese. Neurotoxicology 25:433-41 CrossRef
    13. Mergler D (1999) Neurotoxic effects of low level exposure to manganese in human populations. Environ Res 80:99-02 CrossRef
    14. Rodier J (1955) Manganese poisoning in Moroccan miners. Br J Ind Med 12:21-5
    15. HaMai D, Bondy SC (2004) Oxidative basis of manganese neurotoxicity. Ann N Y Acad Sci 1012:129-41 CrossRef
    16. Mena I, Marin O, Fuenzalida S, Cotzias GC (1967) Chronic manganese poisoning. Clinical picture and manganese turnover. Neurology 17:128-36 CrossRef
    17. Cersosimo MG, Koller WC (2006) The diagnosis of manganese-induced parkinsonism. Neurotoxicology 27:340-46 CrossRef
    18. Bonilla E, Prasad AL (1984) Effects of chronic manganese intake on the levels of biogenic amines in rat brain regions. Neurobehav Toxicol Teratol 6:341-44
    19. Cordova FM, Aguiar AS Jr, Peres TV, Lopes MW, Gon?alves FM, Remor AP et al (2012) In vivo manganese exposure modulates Erk, Akt and Darpp-32 in the striatum of developing rats, and impairs their motor function. PLoS One 7:e33057 CrossRef
    20. Eriksson H, M?giste K, Plantin LO, Fonnum F, Hedstr?m KG, Theodorsson-Norheim E et al (1987) Effects of manganese oxide on monkeys as revealed by a combined neurochemical, histological and neurophysiological evaluation. Arch Toxicol 61:46-2 CrossRef
    21. Komura J, Sakamoto M (1992) Effects of manganese forms on biogenic amines in the brain and behavioral alterations in the mouse: long-term oral administration of several manganese compounds. Environ Res 57:34-4 CrossRef
    22. Betharia S, Maher TJ (2012) Neurobehavioral effects of lead and manganese individually and in combination in developmentally exposed rats. Neurotoxicology 33:1117-127 CrossRef
    23. Blecharz-Klin K, Piechal A, Joniec-Maciejak I, Pyrzanowska J, Widy-Tyszkiewicz E (2012) Effect of intranasal manganese administration on neurotransmission and spatial learning in rats. Toxicol Appl Pharmacol 265:1- CrossRef
    24. Grünecker B, Kaltwasser SF, Zappe AC, Bedenk BT, Bicker Y, Spoormaker VI et al (2012) Regional specificity of manganese accumulation and clearance in the mouse brain: implications for manganese-enhanced MRI. NMR Biomed 26:242-56
    25. Torres-Agustín R, Rodríguez-Agudelo Y, Schilmann A, Solís-Vivanco R, Montes S, Riojas-Rodríguez H et al (2012) Effect of environmental manganese exposure on verbal learning and memory in Mexican children. Environ Res 121:39-4 CrossRef
    26. Archibald FS, Tyree C (1987) Manganese poisoning and the attack of trivalent manganese upon catecholamines. Arch Biochem Biophys 256:638-50 CrossRef
    27. Ali SF, Duhart HM, Newport GD, Lipe GW, Slikker W Jr (1995) Manganese-induced reactive oxygen species: comparison between Mn+2 and Mn+3. Neurodegeneration 4:329-34 CrossRef
    28. Chen JY, Tsao GC, Zhao Q, Zheng W (2001) Differential cytotoxicity of Mn(II) and Mn(III): special reference to mitochondrial [Fe-S] containing enzymes. Toxicol Appl Pharmacol 175:160-68 CrossRef
    29. Perez-Vizcaino F, Duarte J, Santos-Buelga C (2012) The flavonoid paradox: conjugation and deconjugation as key steps for the biological activity of flavonoids. J Sci Food Agric 92(9):1822-825 CrossRef
    30. Cole GM, Teter B, Frautschy SA (2007) Neuroprotective effects of curcumin. Adv Exp Med Biol 595:197-12 CrossRef
    31. Hwang S-L, Shih P-H, Yen G-C (2012) Neuroprotective effects of citrus flavonoids. J Agric Food Chem 60:877-85 CrossRef
    32. Park HY, Kim G-Y, Choi YH (2012) Naringenin attenuates the release of pro-inflammatory mediators from lipopolysaccharide-stimulated BV2 microglia by inactivating nuclear factor-κB and inhibiting mitogen-activated protein kinases. Int J Mol Med 30:204-10
    33. Menon LG, Kuttan R, Kuttan G (1999) Anti-metastatic activity of curcumin and catechin. Cancer Lett 141:159-65 CrossRef
    34. Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23:363-98
    35. Ruby AJ, Kuttan G, Babu KD, Rajasekharan KN, Kuttan R (1995) Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett 94:79-3 CrossRef
    36. Sugiyama Y, Kawakishi S, Osawa T (1996) Involvement of the beta-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin. Biochem Pharmacol 52:519-25 CrossRef
    37. Sharma OP (1976) Antioxidant activity of curcumin and related compounds. Biochem Pharmacol 25:1811-812 CrossRef
    38. Venkatesan N, Punithavathi D, Arumugam V (2000) Curcumin prevents adriamycin nephrotoxicity in rats. Br J Pharmacol 129:231-34 CrossRef
    39. Venkatesan N (1998) Curcumin attenuation of acute adriamycin myocardial toxicity in rats. Br J Pharmacol 124:425-27 CrossRef
    40. Reyes-Gordillo K, Segovia J, Shibayama M, Vergara P, Moreno MG, Muriel P (2007) Curcumin protects against acute liver damage in the rat by inhibiting NF-kappaB, proinflammatory cytokines production and oxidative stress. Biochim Biophys Acta 1770:989-96 CrossRef
    41. Carmona-Ramírez I, Santamaría A, Tobón-Velasco JC, Orozco-Ibarra M, González-Herrera IG, Pedraza-Chaverrí J et al (2013) Curcumin restores Nrf2 levels and prevents quinolinic acid-induced neurotoxicity. J Nutr Biochem 24:14-4 CrossRef
    42. Huang H-C, Xu K, Jiang Z-F (2012) Curcumin-mediated neuroprotection against amyloid-β-induced mitochondrial dysfunction involves the inhibition of GSK-3β. J Alzheimers Dis 32:981-96
    43. Mansouri Z, Sabetkasaei M, Moradi F, Masoudnia F, Ataie A (2012) Curcumin has neuroprotection effect on homocysteine rat model of Parkinson. J Mol Neurosci 47:234-42 CrossRef
    44. Wu J, Li Q, Wang X, Yu S, Li L, Wu X et al (2013) Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway. PLoS One 8:e59843 CrossRef
    45. Tripanichkul W, Jaroensuppaperch E (2012) Curcumin protects nigrostriatal dopaminergic neurons and reduces glial activation in 6-hydroxydopamine hemiparkinsonian mice model. Int J Neurosci 122:263-70 CrossRef
    46. Rajeswari A, Sabesan M (2008) Inhibition of monoamine oxidase-B by the polyphenolic compound, curcumin and its metabolite tetrahydrocurcumin, in a model of Parkinson’s disease induced by MPTP neurodegeneration in mice. Inflammopharmacology 16:96-9 CrossRef
    47. Milatovic D, Zaja-Milatovic S, Gupta RC, Yu Y, Aschner M (2009) Oxidative damage and neurodegeneration in manganese-induced neurotoxicity. Toxicol Appl Pharmacol 240:219-25 CrossRef
    48. Perfeito R, Cunha-Oliveira T, Rego AC (2012) Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease—resemblance to the effect of amphetamine drugs of abuse. Free Radic Biol Med 53:1791-806 CrossRef
    49. Seet RCS, Lee C-YJ, Lim ECH, Tan JJH, Quek AML, Chong W-L et al (2010) Oxidative damage in Parkinson disease: measurement using accurate biomarkers. Free Radic Biol Med 48:560-66 CrossRef
    50. Taylor MD, Erikson KM, Dobson AW, Fitsanakis VA, Dorman DC, Aschner M (2006) Effects of inhaled manganese on biomarkers of oxidative stress in the rat brain. Neurotoxicology 27:788-97 CrossRef
    51. Balogun E, Hoque M, Gong P, Killeen E, Green CJ, Foresti R et al (2003) Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J 371:887-95 CrossRef
    52. Dairam A, Fogel R, Daya S, Limson JL (2008) Antioxidant and iron-binding properties of curcumin, capsaicin, and S-allylcysteine reduce oxidative stress in rat brain homogenate. J Agric Food Chem 56:3350-356 CrossRef
    53. Ordo?ez-Librado JL, Gutierrez-Valdez AL, Colín-Barenque L, Anaya-Martínez V, Díaz-Bech P, Avila-Costa MR (2008) Inhalation of divalent and trivalent manganese mixture induces a Parkinson’s disease model: immunocytochemical and behavioral evidences. Neuroscience 155:7-6 CrossRef
    54. Sanchez-Betancourt J, Anaya-Martínez V, Gutierrez-Valdez AL, Ordo?ez-Librado JL, Montiel-Flores E, Espinosa-Villanueva J et al (2012) Manganese mixture inhalation is a reliable Parkinson disease model in rats. Neurotoxicology 33:1346-355 CrossRef
    55. Ordo?ez-Librado JL, Anaya-Martínez V, Gutierrez-Valdez AL, Colín-Barenque L, Montiel-Flores E, Avila-Costa MR (2010) Manganese inhalation as a Parkinson disease model. Park Dis 2011:612989
    56. Ordo?ez-Librado JL, Anaya-Martinez V, Gutierrez-Valdez AL, Montiel-Flores E, Corona DR, Martinez-Fong D et al (2010) l -DOPA treatment reverses the motor alterations induced by manganese exposure as a Parkinson disease experimental model. Neurosci Lett 471:79-2 CrossRef
    57. Frautschy SA, Hu W, Kim P, Miller SA, Chu T, Harris-White ME et al (2001) Phenolic anti-inflammatory antioxidant reversal of Abeta-induced cognitive deficits and neuropathology. Neurobiol Aging 22:993-005 CrossRef
    58. Jyoti A, Sethi P, Sharma D (2009) Curcumin protects against electrobehavioral progression of seizures in the iron-induced experimental model of epileptogenesis. Epilepsy Behav 14:300-08 CrossRef
    59. Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS et al (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892-901 CrossRef
    60. Whishaw IQ (2000) Loss of the innate cortical engram for action patterns used in skilled reaching and the development of behavioral compensation following motor cortex lesions in the rat. Neuropharmacology 39:788-05 CrossRef
    61. Rial D, Duarte FS, Xikota JC, Schmitz AE, Dafré AL, Figueiredo CP et al (2009) Cellular prion protein modulates age-related behavioral and neurochemical alterations in mice. Neuroscience 164:896-07 CrossRef
    62. Almeida EA, Bainy ACD, Medeiros MHG, Di Mascio P (2003) Effects of trace metal and exposure to air on serotonin and dopamine levels in tissues of the mussel / Perna perna. Mar Pollut Bull 46:1485-490 CrossRef
    63. Jackson GM, Jackson SR, Hindle JV (2000) The control of bimanual reach-to-grasp movements in hemiparkinsonian patients. Exp Brain Res 132:390-98 CrossRef
    64. Santos D, Milatovic D, Andrade V, Batoreu MC, Aschner M, Marreilha dos Santos AP (2012) The inhibitory effect of manganese on acetylcholinesterase activity enhances oxidative stress and neuroinflammation in the rat brain. Toxicology 292:90-8 CrossRef
    65. Vezér T, Papp A, Hoyk Z, Varga C, Náray M, Nagymajtényi L (2005) Behavioral and neurotoxicological effects of subchronic manganese exposure in rats. Environ Toxicol Pharmacol 19:797-10 CrossRef
    66. Adler CH (2011) Premotor symptoms and early diagnosis of Parkinson’s disease. Int J Neurosci 121(Suppl 2):3- CrossRef
    67. Dubois B, Pillon B (1997) Cognitive deficits in Parkinson’s disease. J Neurol 244:2- CrossRef
    68. Muslimovic D, Post B, Speelman JD, Schmand B (2005) Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology 65:1239-245 CrossRef
    69. Erikson KM, John CE, Jones SR, Aschner M (2005) Manganese accumulation in striatum of mice exposed to toxic doses is dependent upon a functional dopamine transporter. Environ Toxicol Pharmacol 20:390-94 CrossRef
    70. Stredrick DL, Stokes AH, Worst TJ, Freeman WM, Johnson EA, Lash LH et al (2004) Manganese-induced cytotoxicity in dopamine-producing cells. Neurotoxicology 25:543-53 CrossRef
    71. Chang Y, Lee J-J, Seo J-H, Song H-J, Kim J-H, Bae S-J et al (2010) Altered working memory process in the manganese-exposed brain. NeuroImage 53:1279-285 CrossRef
    72. Schneider JS, Decamp E, Koser AJ, Fritz S, Gonczi H, Syversen T et al (2006) Effects of chronic manganese exposure on cognitive and motor functioning in non-human primates. Brain Res 1118:222-31 CrossRef
    73. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S et al (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274:1527-531 CrossRef
    74. Dong S, Zeng Q, Mitchell ES, Xiu J, Duan Y, Li C et al (2012) Curcumin enhances neurogenesis and cognition in aged rats: implications for transcriptional interactions related to growth and synaptic plasticity. PLoS One 7:e31211 CrossRef
    75. Sethi P, Jyoti A, Hussain E, Sharma D (2009) Curcumin attenuates aluminium-induced functional neurotoxicity in rats. Pharmacol Biochem Behav 93:31-9 CrossRef
    76. Khuwaja G, Khan MM, Ishrat T, Ahmad A, Raza SS, Ashafaq M et al (2011) Neuroprotective effects of curcumin on 6-hydroxydopamine-induced Parkinsonism in rats: behavioral, neurochemical and immunohistochemical studies. Brain Res 1368:254-63 CrossRef
    77. Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SNF, Gerwig M et al (2012) Consensus Paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum 11:457-87 CrossRef
    78. Wolpaw JR, Chen XY (2006) The cerebellum in maintenance of a motor skill: a hierarchy of brain and spinal cord plasticity underlies H-reflex conditioning. Learn Mem 13:208-15 CrossRef
    79. Rüegg DG, Juvet P (1984) Contributions of the motor cortex and the cerebellum to a simple learned movement in the monkey. Neurosci Lett 46:235-39 CrossRef
    80. Filip P, Lungu OV, Bare? M (2013) Dystonia and the cerebellum: a new field of interest in movement disorders? Clin Neurophysiol 124:1269-276 CrossRef
    81. Jaques JA dos S, Rezer JFP, Carvalho FB, da Rosa MM, Gutierres JM, Gon?alves JF, et al (2012) Curcumin protects against cigarette smoke-induced cognitive impairment and increased acetylcholinesterase activity in rats. Physiol Behav 106:664-69
    82. Jaques JADS, Doleski PH, Castilhos LG, da Rosa MM, Souza V do CG, Carvalho FB, et al (2013) Free and nanoencapsulated curcumin prevents cigarette smoke-induced cognitive impairment and redox imbalance. Neurobiol Learn Mem 100C:98-07
    83. Shohamy D, Adcock RA (2010) Dopamine and adaptive memory. Trends Cogn Sci (Regul Ed) 14:464-72 CrossRef
    84. Xu Y, Ku B-S, Yao H-Y, Lin Y-H, Ma X, Zhang Y-H et al (2005) Antidepressant effects of curcumin in the forced swim test and olfactory bulbectomy models of depression in rats. Pharmacol Biochem Behav 82:200-06 CrossRef
    85. Kulkarni SK, Bhutani MK, Bishnoi M (2008) Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology (Berl) 201:435-42 CrossRef
    86. Du X-X, Xu H-M, Jiang H, Song N, Wang J, Xie J-X (2012) Curcumin protects nigral dopaminergic neurons by iron-chelation in the 6-hydroxydopamine rat model of Parkinson’s disease. Neurosci Bull 28:253-58 CrossRef
    87. Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572-84 CrossRef
    88. Tay WM, da Silva GFZ, Ming L-J (2013) Metal binding of flavonoids and their distinct inhibition mechanisms toward the oxidation activity of Cu(2+)-β-amyloid: not just serving as suicide antioxidants! Inorg Chem 52:679-90 CrossRef
    89. Baum L, Ng A (2004) Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheimers Dis 6:367-77
    90. Sumanont Y, Murakami Y, Tohda M, Vajragupta O, Watanabe H, Matsumoto K (2007) Effects of manganese complexes of curcumin and diacetylcurcumin on kainic acid-induced neurotoxic responses in the rat hippocampus. Biol Pharm Bull 30:1732-739 CrossRef
    91. Lambert JD, Sang S, Yang CS (2007) Possible controversy over dietary polyphenols: benefits vs risks. Chem Res Toxicol 20:583-85 CrossRef
    92. Rietjens IMCM, Boersma MG, de Haan L, Spenkelink B, Awad HM, Cnubben NHP et al (2002) The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environ Toxicol Pharmacol 11:321-33 CrossRef
    93. Sahu SC, Gray GC (1993) Interactions of flavonoids, trace metals, and oxygen: nuclear DNA damage and lipid peroxidation induced by myricetin. Cancer Lett 70:73-9 CrossRef
    94. Sugihara N, Arakawa T, Ohnishi M, Furuno K (1999) Anti- and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with alpha-linolenic acid. Free Radic Biol Med 27:1313-323 CrossRef
    95. Ahsan H, Parveen N, Khan NU, Hadi SM (1999) Pro-oxidant, anti-oxidant and cleavage activities on DNA of curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin. Chem Biol Interact 121:161-75 CrossRef
    96. Huang H-C, Lin C-J, Liu W-J, Jiang R-R, Jiang Z-F (2011) Dual effects of curcumin on neuronal oxidative stress in the presence of Cu(II). Food Chem Toxicol 49:1578-583 CrossRef
    97. Nair J, Strand S, Frank N, Knauft J, Wesch H, Galle PR et al (2005) Apoptosis and age-dependant induction of nuclear and mitochondrial etheno-DNA adducts in Long-Evans Cinnamon (LEC) rats: enhanced DNA damage by dietary curcumin upon copper accumulation. Carcinogenesis 26:1307-315 CrossRef
    98. Martins R de P, Braga H de C, da Silva AP, Dalmarco JB, de Bem AF, dos Santos ARS, et al (2009) Synergistic neurotoxicity induced by methylmercury and quercetin in mice. Food Chem Toxicol 47:645-49
    99. Li Y, He Y, Guan Q, Liu W, Han H, Nie Z (2012) Disrupted iron metabolism and ensuing oxidative stress may mediate cognitive dysfunction induced by chronic cerebral hypoperfusion. Biol Trace Elem Res 150:242-48 CrossRef
    100. Umur EE, Oktenli C, Celik S, Tangi F, Sayan O, Sanisoglu YS et al (2011) Increased iron and oxidative stress are separately related to cognitive decline in elderly. Geriatr Gerontol Int 11:504-09 CrossRef
    101. Napolitano A, Manini P, d-Ischia M (2011) Oxidation chemistry of catecholamines and neuronal degeneration: an update. Curr Med Chem 18:1832-845 CrossRef
  • 作者单位:Ariana Ern Schmitz (1)
    Paulo Alexandre de Oliveira (2)
    Luiz F. de Souza (1)
    Danilo Grünig Humberto da Silva (3)
    Samara Danielski (1)
    Danúbia Bonfanti Santos (1)
    Eduardo Alves de Almeida (3)
    Rui Daniel Prediger (2)
    Andrew Fisher (4)
    Marcelo Farina (1)
    Alcir Luiz Dafre (1)

    1. Department of Biochemistry, Federal University of Santa Catarina, Biological Sciences Centre, 88040-900, Florianópolis, SC, Brazil
    2. Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
    3. Department of Chemistry and Environmental Sciences, University Paulista Júlio de Mesquita Filho, S?o Paulo, SP, Brazil
    4. School of Geography, Earth and Environmental Sciences, University of Plymouth, PL4 8AA, Plymouth, UK
  • ISSN:1559-0720
文摘
Manganese (Mn) exposure is related to industrial activities, where absorption by inhalation has high relevance. Manganism, a syndrome caused as a result of excessive accumulation of Mn in the central nervous system, has numerous symptoms similar to those seen in idiopathic Parkinson disease (IPD). Some of these symptoms, such as learning, memory, sensorial, and neurochemical changes, appear before the onset of motor deficits in both manganism and IPD. The aim of this study was to evaluate the possible neuroprotective effects of curcumin against behavioral deficits induced by Mn toxicity in young (2?months old) Swiss mice. We evaluated the effect of chronic inhalation of a Mn mixture [Mn(OAc)3 and MnCl2 (20:40?mM)], 1?h/session, three times a week, over a 14-week period on behavioral and neurochemical parameters. Curcumin was supplemented in the diet (500 or 1,500?ppm in food pellets). The Mn disrupted the motor performance evaluated in the single-pellet reach task, as well as the short- and long-term spatial memory evaluated in the step-down inhibitory avoidance task. Surprisingly, curcumin also produced similar deleterious effects in such behavioral tests. Moreover, the association of Mn plus curcumin significantly increased the levels of Mn and iron, and decreased the levels of dopamine and serotonin in the hippocampus. These alterations were not observed in the striatum. In conclusion, the current Mn treatment protocol resulted in mild deficits in motor and memory functions, resembling the early phases of IPD. Additionally, curcumin showed no beneficial effects against Mn-induced disruption of hippocampal metal and neurotransmitter homeostasis. Figure ?/div>

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700