Digestive enzymes of two brachyuran and two anomuran land crabs from Christmas Island, Indian Ocean
详细信息    查看全文
  • 作者:Stuart M. Linton (1) (3)
    Reinhard Saborowski (2)
    Alicia J. Shirley (1)
    Jake A. Penny (1)
  • 关键词:Land crabs ; Digestion ; Digestive enzymes ; Zymography
  • 刊名:Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:184
  • 期:4
  • 页码:449-468
  • 全文大小:
  • 参考文献:1. Adamczewska AM, Morris S (2001) Ecology and behavior of / Gecarcoidea natalis, the Christmas Island Red Crab, during the annual breeding migration. Biol Bull 200:305-20 CrossRef
    2. Allardyce BJ, Linton SM (2008) Purification and characterisation of endo-β-1,4-glucanase and laminarinase enzymes from the gecarcinid land crab / Gecarcoidea natalis and the aquatic crayfish / Cherax destructor. J Exp Biol 211(14):2275-287 CrossRef
    3. Allardyce BJ, Linton SM, Saborowski R (2010) The last piece in the cellulase puzzle: the characterisation of {beta}-glucosidase from the herbivorous gecarcinid land crab / Gecarcoidea natalis. J Exp Biol 213(17):2950-957. doi:10.1242/jeb.041582 CrossRef
    4. Barnes DKA (1997) Ecology of tropical hermit crabs at Quirimba Island, Mozambique: a novel and locally important food source. Mar Ecol Prog Ser 161:299-02 CrossRef
    5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1-):248-54 CrossRef
    6. Celis-Guerrero LE, García-Carre?o F, del Toro MAN (2004) Characterization of proteases in the digestive system of spiny lobster ( / Panulirus interruptus). Mar Biotechnol 6:262-69 CrossRef
    7. Cherif S, Fendri A, Miled N, Trabelsi H, Mejdoub H, Gargouri Y (2007) Crab digestive lipase acting at high temperature: purification and biochemical characterization. Biochimie 89(8):1012-018 CrossRef
    8. Clissold FJ, Tedder BJ, Conigrave AD, Simpson SJ (2010) The gastrointestinal tract as a nutrient-balancing organ. Proc Royal Soc B: Biol Sci 277(1688):1751-759. doi:10.1098/rspb.2009.20452009.2045 CrossRef
    9. Crawford AC, Kricker JA, Anderson AJ, Richardson NA, Mather PB (2004) Structure and function of a cellulase gene in redclaw crayfish / Cherax quadricarinatus. Gene 340:267-74 CrossRef
    10. Davie PJF (2002) Crustacea: Malacostraca: Eucarida (Part 2): Decapoda–Anomura, Brachyura. In: Wells A, Houston WWK (eds) Zoological catalogue of Australia, vol 19.3B. CSIRO Publishing, Melbourne, p xiv 641
    11. del Toro MAN, García-Carre?o FL, Lopez MD, Celis G, Laura E, Saborowski R (2006) Aspartic proteinases in the digestive tract of marine decapod crustaceans. J Exp Zool 305A:645-54 CrossRef
    12. Díaz-Tenorio LM, García-Carre?o FL, del Toro MAN (2006) Characterization and comparison of digestive proteinases of the Cortez swimming crab, / Callinectes bellicosus, and the arched swimming crab, / Callinectes arcuatus. Invertebr Biol 125(2):125-35 CrossRef
    13. Drew MM, Harzsch S, Stensmyr M, Erland S, Hansson BS (2010) A review of the biology and ecology of the Robber Crab, / Birgus latro (Linnaeus, 1767) (Anomura: Coenobitidae). Zoologischer Anzeiger—J Comp Zool 249(1):45-7 CrossRef
    14. Espie PJ, Roff JC (1995) Characterization of Chitobiase from / Daphnia magna and its relation to chitin flux. Physiol Zool 68(5):727-48
    15. Figueiredo MSRB, Kricker JA, Anderson AJ (2001) Digestive enzyme activities in the alimentary tract of redclaw crayfish, / Cherax quadricarinatus (Decapoda: Parastacidae). J Crustac Biol 21(2):334-44 CrossRef
    16. Fletcher WJ, Brown IW, Fielder DR (1990) Movement of coconut crabs, / Birgus / latro, in rainforest habitat in Vanuatu. Pac Sci 44(4):407-16
    17. Galgani FG, Benyamin Y, Van Wormhoudt A (1985) Purification, properties and immunoassay of trypsin from the shrimp / Penaeus japonicus. Comp Biochem Physiol Part B: Comp Biochem 81(2):447-52 CrossRef
    18. García-Carre?o FL, Dimes LE, Haard NF (1993) Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Anal Biochem 214(1):65-9 CrossRef
    19. German DP, Nagle BC, Villeda JM, Ruiz AM, Thomson AW, Contreras Balderas S, Evans DH (2010) Evolution of herbivory in a carnivorous clade of minnows (Teleostei: Cyprinidae): effects on gut size and digestive physiology. Physiol Biochem Zool: PBZ 83(1):1-8. doi:10.1086/648510 CrossRef
    20. Gimenez AVF, García-Carre?o FL, del Toro MAN, Fenucci JL (2002) Digestive proteinases of / Artemesia longinaris (Decapoda, Penaeidae) and relationship with molting. Comp Biochem Physiol B 132:593-98 CrossRef
    21. Greenaway P (2001) Sodium and water balance in free-ranging robber crabs, / Birgus latro (Anomura: Coenobitidae). J Crustac Biol 21(2):317-27 CrossRef
    22. Greenaway P (2003) Terrestrial adaptations in the Anomura (Crustacea: Decapoda). Mem Mus Vic 60(1):13-6
    23. Greenaway P, Linton SM (1995) Dietary assimilation and food retention time in the herbivorous terrestrial crab / Gecarcoidea natalis. Physiol Zool 68(6):1006-028
    24. Greenaway P, Raghaven S (1998) Digestive strategies in two species of leaf-eating land crabs (Brachyura: Gecarcinidae) in a rain forest. Physiol Zool 71(1):36-4 CrossRef
    25. Grubb P (1971) Ecology of terrestrial decapod crustaceans on Aldabra. Philos Trans R Soc Lond 260:411-16 CrossRef
    26. Hagerman AE, Butler LG (1991) Tannins and lignins. In: Rosenthal GA, Berenbaum MR (eds) Herbivores their interactions with secondary plant metabolites, vol 1, 2nd edn. Academic Press, San Diego, pp 355-86 CrossRef
    27. Hartnoll RG (1988) Evolution, systematics, and geographical distribution. In: Burggren WW, McMahon BR (eds) Biology of the land crabs. Cambridge University Press, Cambridge, pp 7-3
    28. Hehemann J-H, Redecke L, Perbandt M, Saborowski R, Betzel C (2007) Crystallization and preliminary X-ray diffraction studies of trypsin-like proteases from the gastric fluid of the marine crab / Cancer pagurus. Acta Crystallogr Sect F 63(3):242-45. doi:10.1107/s1744309107008524 CrossRef
    29. Hicks J, Rumpff H, Yorkston H (1990) Christmas crabs, 2nd edn. Christmas Island Natural History Association, Christmas Island
    30. Johnston D, Freeman J (2005) Dietary preference and digestive enzymes activities as indicators of trophic resource utilization by six species of crab. Biol Bull 208:36-6 CrossRef
    31. Johnston DJ, Yellowlees D (1998) Relationship between dietary preferences and digestive enzyme complement of the slipper lobster / Thenus orientalis (Decapoda: Scyllaridae). J Crustac Biol 18(4):656-65 CrossRef
    32. Johnston D, Hermans JM, Yellowlees D (1995) Isolation and characterization of a trypsin from the slipper lobster, / Thenus orientalis (Lund). Arch Biochem Biophys 324(1):35-0 CrossRef
    33. Johnston D, Ritar AJ, Thomas CW (2004) Digestive enzyme profiles reveal digestive capacity and potential energy sources in fed and starved spiny lobster / (Jasus edwardsii) phyllosoma larvae. Comp Biochem Physiol B 138:137-44 CrossRef
    34. Johnston M, Johnston D, Richardson A (2005) Digestive capabilities reflect the major food sources in three species of talitrid amphipods. Comp Biochem Physiol—B Biochem Mol Biol 140(2):251-57 CrossRef
    35. Jue DK, Lipke PN (1985) Determination of reducing sugars in the nanomole range with tetrazolium blue. J Biochem Biophys Methods 11:109-15 CrossRef
    36. Karasov WH, del Rio CM, Caviedes-Vidal E (2011) Ecological physiology of diet and digestive systems. In: Julius D, Clapham DE (eds) Annual review of physiology, vol 73. Annual review of physiology. Annual reviews, Palo Alto, pp 69-3. doi:10.1146/annurev-physiol-012110-142152
    37. Knotz S, Boersma M, Saborowski R (2006) Microassays for a set of enzymes in individual small marine copepods. Comp Biochem Physiol—Mol Integr Physiol 145(3):406-11 CrossRef
    38. Kono M, Matusi T, Shimizu C, Koga D (1990) Purifications and some properties of chitinase from the liver of a prawn. Penaeus japonicus. Agricultural Biological Chemistry 54(8):2145-147 CrossRef
    39. Kostanj?ek R, Milatovi? M, ?trus J (2010) Endogenous origin of endo-β-1,4-glucanase in common woodlouse / Porcellio scaber (Crustacea, Isopoda). J Comp Physiol (B) 180(8):1143-153. doi:10.1007/s00360-010-0485-7 CrossRef
    40. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680-85 CrossRef
    41. Lee A-C, Chuang N–N (1991) Characterization of different molecular forms of alkaline phosphatase in the hepatopancreas from the shrimp / Penaeus monodon (Crustacea: Decapoda). Comp Biochem Physiol Part B: Comp Biochem 99(4):845-50 CrossRef
    42. Lemos D, Hernández-Cortés MP, Navarrete A, García-Carre?o FL, Phan VN (1999) Ontogenetic variation in digestive proteinase activity of larvae and postlarvae of the pink shrimp / Farfantepenaeus paulensis (Crustacea: Decapoda: Penaeidae). Mar Biol 135(4):653-62. doi:10.1007/s002270050666 CrossRef
    43. Linnaeus C (1767) Systema naturae per regna tria naturae, secundum classes, ordinies, genera, species cum character-bus, differentiis, synonymis, locis, 12 edn. Stockholm
    44. Linton SM, Greenaway P (2004) Presence and properties of cellulase and hemicellulase enzymes of the gecarcinid land crabs / Gecarcoidea natalis and / Discoplax hirtipes. J Exp Biol 207:4095-104 CrossRef
    45. Linton SM, Greenaway P (2007) A review of feeding and nutrition of herbivorous land crabs: adaptations to low quality plant diets. J Comp Physiol B 177:269-86 CrossRef
    46. Linton SM, Shirley AJ (2011) Isozymes from the herbivorous gecarcinid land crab, / Gecarcoidea natalis that possess both lichenase and endo-β-1,4-glucanase activity. Comp Biochem Physiol—B Biochem Mol Biol 160(1):44-3 CrossRef
    47. Linton SM, Greenaway P, Towle DW (2006) Endogenous production of endo-β-1,4-glucanase by decapod crustaceans. J Comp Physiol B 176:339-48 CrossRef
    48. Lo N, Tokuda G, Watanabe H (2011) Evolution and function of endogenous termite cellulases. Biology of termites: A modern synthesis. Springer, Heidelberg
    49. López-López S, Nolasco H, Vega-Villasante F (2003) Characterization of digestive gland esterase-lipase activity of juvenile redclaw crayfish / Cherax quadricarinatus. Comp Biochem Physiol B: Biochem Mol Biol 135(2):337-47 CrossRef
    50. Milne Edwards H (1853) Histoire Naturelle des Crustaces. Librairie Encyclopedique de Roret (Paris) 2, p 532
    51. Morris S, Postel U, Mrinalini P, Turner LM, Palmer J, Webster SG (2010) The adaptive significance of crustacean hyperglycaemic hormone (CHH) in daily and seasonal migratory activities of the Christmas Island red crab / Gecarcoidea natalis. J Exp Biol 213(17):3062-073. doi:10.1242/jeb.045153 CrossRef
    52. Ng PKL, Davie PJF (2012) The blue crab of Christmas Island, / Discoplax celeste, new species (Crustacea: Decapoda: Brachyura: Gecarcinidae). Raffles Bull Zool 60(1):89-00
    53. Nilsen IW, ?verb? K, Olsen RL (2001) Thermolabile alkaline phosphatase from Northern shrimp ( / Pandalus borealis): protein and cDNA sequence analyses. Comp Biochem Physiol B: Biochem Mol Biol 129(4):853-61 CrossRef
    54. Park J, Cho SY, Choi SJ (2008) Purification and characterization of hepatic lipase from / Todarodes pacificus. J Biochem Mol Biol 41(3):254-58
    55. Pavasovic M, Richardson NA, Anderson AJ, Mann D, Mather PB (2004) Effect of pH, temperature and diet on digestive enzyme profiles in the mud crab, / Scylla serrata. Aquaculture 242(1-):641-54 CrossRef
    56. Pavasovic A, Anderson AJ, Mather PB, Richardson NA (2007a) Effect of a variety of animal, plant and single cell-based feed ingredients on diet digestibility and digestive enzyme activity in redclaw crayfish, / Cherax quadricarinatus (Von Martens 1868). Aquaculture 272(1-):564-72. doi:10.1016/j.aquaculture.2007.08.027 CrossRef
    57. Pavasovic A, Anderson AJ, Mather PB, Richardson NA (2007b) Influence of dietary protein on digestive enzyme activity, growth and tail muscle composition in redclaw crayfish, / Cherax quadricarinatus (von Martens). Aquac Res 38(6):644-52. doi:10.1111/j.1365-2109.2007.01708.x CrossRef
    58. Pocock RI (1888) On the Arachnida, Myriopoda, and land-Crustacea of Christmas Island. Proc Zool Soc Lond 56(1):556-64 CrossRef
    59. Prim N, Sánchez M, Ruiz C, Javier Pastor FI, Díaz P (2003) Use of methylumbeliferyl-derivative substrates for lipase activity characterization. J Mol Catal B Enzym 22(5-):339-46 CrossRef
    60. Rivera-Pérez C, del Toro MAN, García-Carre?o F (2011) Purification and characterization of an intracellular lipase from pleopods of whiteleg shrimp ( / Litopenaeus vannamei). Comp Biochem Physiol—B Biochem Mol Biol 158(1):99-05 CrossRef
    61. Saborowski R, Sahlinga G, Navarette del Toro MA, Waltera I, García-Carre?ob FL (2004) Stability and effects of organic solvents on endopeptidases from the gastric fluid of the marine crab / Cancer pagurus. J Mol Catal B: Enzym 30(3-):109-18 CrossRef
    62. Sainz JC, García-Carre?o FL, Hernández-Cortés P (2004) / Penaeus vannamei isotrypsins: purification and characterization. Comp Biochem Physiol B 138:155-62 CrossRef
    63. Sakamoto K, Toyohara H (2009a) Molecular cloning of glycoside hydrolase family 45 cellulase genes from brackish water clam / Corbicula japonica. Comp Biochem Physiol B: Biochem Mol Biol 152(4):390-96 CrossRef
    64. Sakamoto K, Toyohara H (2009b) Putative endogenous xylanase from brackish-water clam / Corbicula japonica. Comp Biochem Physiol B: Biochem Mol Biol 154(1):85-2 CrossRef
    65. Sakamoto K, Touhata K, Yamashita M, Kasai A, Toyohara H (2007) Cellulose digestion by common Japanese freshwater clam / Corbicula japonica. Fish Sci 73:675-83 CrossRef
    66. Sakamoto K, Uji S, Kurokawa T, Toyohara H (2009) Molecular cloning of endogenous [beta]-glucosidase from common Japanese brackish water clam / Corbicula japonica. Gene 435(1-):72-9 CrossRef
    67. Schondube JE, Herrera-M LG, Martínez del Rio C (2001) Diet and the evolution of digestion and renal function in phyllostomid bats. Zoology 104(1):59-3. doi:10.1078/0944-2006-00007 CrossRef
    68. Stensmyr MC, Erland S, Hallberg E, Wallen R, Greenaway P, Hansson BS (2005) Insect-like olfactory adaptations in the terrestrial giant robber crab. Curr Biol 15:116-21 CrossRef
    69. Swain T (1979) Tannins and lignins. In: Rosenthal GA, Janzen DH (eds) Herbivores, their interaction with secondary plant metabolites. Academic press, New York, pp 657-82
    70. Terra WR, Ferreira C (2005) Biochemistry of digestion. In: Sarjeet S (ed) Comprehensive molecular insect science. Elsvier, Amsterdam, New York, pp 171-24 CrossRef
    71. Teschke M, Saborowski R (2005) Cysteine proteinases substitute for serine proteinases in the midgut glands of / Crangon crangon and / Crangon allmani (Decapod: Caridea). J Exp Mar Biol Ecol 316:213-29 CrossRef
    72. Van Wormhoudt A, Favrel P (1988) Electrophoretic characterization of / Palaemon elegans (crustacea, decapoda) alpha-amylase system: study of amylase polymorphism during the intermolt cycle. Comp Biochem Physiol Part B: Comp Biochem 89(2):201-07 CrossRef
    73. Van Wormhoudt A, Bourreau G, Le Moullac G (1995) Amylase polymorphism in crustacea decapoda: electrophoretic and immunological studies. Biochem Syst Ecol 23(2):139-49 CrossRef
    74. Vonk HJ, Western JRH (1984) Comparative biochemistry and physiology of enzymatic digestion. Academic Press, New York
    75. Wilde JE, Linton SM, Greenaway P (2004) Dietary assimilation and the digestive strategy of the omnivorous anomuran land crab / Birgus latro (Coenobitidae). J Comp Physiol B 174:299-08 CrossRef
    76. Xie X-L, Chen Q-X, Lin J-C (2004) Purification and some properties of β- / N-acetyl-d -glucosaminidase from prawn ( / Penaeus vannamei). Mar Biol 146:143-48 CrossRef
    77. Xue XM, Aderson AJ, Richardson NA, Anderson AJ, Xue GP, Mather PB (1999) Characterisation of cellulase activity in the digestive system of the redclaw crayfish ( / Cherax quadricarinatus). Aquaculture 180:373-86 CrossRef
    78. Zhang J-P, Chen Q-X, Wang Q, Xie J–J (2006) Purification and some properties of β- / N-acetyl-d -glucosaminidase from viscera of green crab ( / Scylla serrata). Biochemistry (Moscow) 71(Suppl. 1):S55–S59 CrossRef
    79. Zouari N, Miled N, Cherif S, Mejdoub H, Gargouri Y (2005) Purification and characterization of a novel lipase from the digestive glands of a primitive animal: the scorpion. Biochimica et Biophy Acta—Gen Subj 1726(1):67-4 CrossRef
  • 作者单位:Stuart M. Linton (1) (3)
    Reinhard Saborowski (2)
    Alicia J. Shirley (1)
    Jake A. Penny (1)

    1. School of Life and Environmental Sciences, Deakin University, Pigdons Road, Waurn Ponds, VIC, 3217, Australia
    3. School of Life and Environmental Sciences, Deakin University, Locked bag 20000, Geelong, VIC, 3220, Australia
    2. Functional Ecology, Alfred Wegener Institute for Polar and Marine Research, P.O. Box 120161, 27570, Bremerhaven, Germany
  • ISSN:1432-136X
文摘
The digestive ability of four sympatric land crabs species (the gecarcinids, Gecarcoidea natalis and Discoplax celeste and the anomurans, Birgus latro and Coenobita perlatus) was examined by determining the activity of their digestive enzymes. The gecarcinids are detritivores that consume mainly leaf litter; the robber crab, B. latro, is an omnivore that preferentially consumes items high in lipid, carbohydrate and/or protein; C. perlatus is also an omnivore/detritivore. All species possess protease, lipase and amylase activity for hydrolysing ubiquitous protein, lipid and storage polysaccharides (glycogen and starch). Similarly all species possess enzymes such?as N-acetyl-β-d-glucosaminidase, the cellulases, endo-β-1,4-glucanase and β-glucohydrolase and hemicellulases, lichenase and laminarinase for the respective hydrolysis of structural substrates chitin, cellulose and hemicelluloses, lichenan and laminarin. Except for the enzyme activities of C. perlatus, enzyme activity could not be correlated to dietary preference. Perhaps others factors such as olfactory and locomotor ability and metabolic status may determine the observed dietary preferences. The digestive fluid of C. perlatus possessed higher endo-β-1,4-glucanase, lichenase and laminarinase activities compared to that of the other species. Thus, C. perlatus may be efficient at digestion of cellulose and hemicellulose within plant material. Zymography indicated that the majority of protease, lipase, phosphatase, amylase, endo-β-1,4-glucanase, β-glucohydrolase and N-acetyl-β-d-glucosaminidase isozymes were common to all species, and hence were inherited from a common aquatic ancestor. Differences were observed for the phosphatase, lipase and endo-β-1,4-glucanase isozymes. These differences are discussed in relation to phylogeny and possible evolution to cope with the adoption of a terrestrial diet.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700