Hydrogen sites in the dense hydrous magnesian silicate phase E: a pulsed neutron powder diffraction study
详细信息    查看全文
  • 作者:Naotaka Tomioka ; Takuo Okuchi ; Narangoo Purevjav…
  • 关键词:DHMS phase ; High pressure ; Hydrogen sites ; Neutron diffraction ; Phase E
  • 刊名:Physics and Chemistry of Minerals
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:43
  • 期:4
  • 页码:267-275
  • 全文大小:1,125 KB
  • 参考文献:Bindi L, Nishi M, Tsuchiya J, Irifune T (2014) Crystal chemistry of dense hydrous magnesium silicates: the structure of phase H, MgSiH2O4, synthesized at 45 GPa and 1000 °C. Am Miner 99:1802–1805CrossRef
    Busing WR, Levy HA (1957) Neutron diffraction study of calcium hydroxide. J Chem Phys 26:563–568CrossRef
    Catti M, Ferraris G, Hull S, Pavese A (1995) Static compression and H disorder in brucite, Mg(OH)2, to 11 GPa: a powder neutron diffraction study. Phys Chem Miner 22:200–206CrossRef
    Duffy TS, Meade C, Fei Y, Mao HK, Hemley RJ (1995) High-pressure phase transition in brucite, Mg(OH)2. Am Miner 80:222–230CrossRef
    Faccenda M (2014) Water in the slab: a trilogy. Tectonophysics 614:1–30CrossRef
    Finger LW, Ko J, Hazen RM, Gasparik T, Hemley RJ, Prewitt CT, Weidner DJ (1989) Crystal chemistry of phase B and an anhydrous analogue: implications for water storage in the upper mantle. Nature 341:140–142CrossRef
    Harjo S, Moriai A, Torii S, Suzuki H, Suzuya K, Morii Y, Arai M, Tomota Y, Akita K, Akiniwa Y (2006) Design of Engineering Diffractometer at J-PARC. Mater Sci Forum 524–525:199–204CrossRef
    Holland TJB, Redfern SAT (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Miner Mag 61:65–77CrossRef
    Horiuchi H, Morimoto N, Yamamoto K, Akimoto A (1979) Crystal structure of 2Mg2SiO4·3 Mg(OH)2, a new high-pressure structure type. Am Miner 64:593–598
    Ingrin J, Blanchard M (2006) Diffusion of hydrogen in minerals. Rev Miner Geochem 62:291–320CrossRef
    Iwamori H (2004) Phase relations of peridotites under H2O-saturated conditions and ability of subducting plates for transportation of H2O. Earth Planet Sci Lett 227:57–71CrossRef
    Jacobsen SD (2006) Effect of water on the equation of state of nominally anhydrous minerals. Rev Miner Geochem 62:321–342CrossRef
    Kagi H, Parise JB, Cho H, Rossman GR, Loveday JS (2000) Hydrogen bonding interactions in phase A [Mg7Si2O8(OH)6] at ambient and high pressure. Phys Chem Miner 27:225–233CrossRef
    Kanzaki M (1991) Stability of hydrous magnesium silicates in the mantle transition zone. Phys Earth Planet Inter 66:307–312CrossRef
    Karato S (2006) Remote sensing of hydrogen in Earth’s Mantle. Rev Miner Geochem 62:343–375CrossRef
    Kawamoto T (2004) Hydrous phase stability and partial melt chemistry in H2O-saturated KLB-1 peridotite up to the uppermost lower mantle conditions. Phys Earth Planet Inter 143–144:387–395CrossRef
    Kleppe AK, Jephcoat AP, Ross NL (2001) Raman spectroscopic studies of phase E to 19 GPa. Am Miner 86:1275–1281CrossRef
    Kohlstedt D (2006) The role of water in high-temperature rock deformation. Rev Miner Geochem 62:377–396CrossRef
    Kudoh Y, Finger LW, Hazen RM, Prewitt CT, Kanzaki M, Veblen DR (1993) Phase E: a high pressure hydrous silicate with unique crystal chemistry. Phys Chem Miner 19:357–360CrossRef
    Mookherjee M, Stixrude L (2006) High-pressure proton disorder in brucite. Am Miner 91:127–134CrossRef
    Nagai T, Hattori T, Yamanaka T (2000) Compression mechanism of brucite: an investigation by structural refinement under pressure. Amer Miner 85:760–764CrossRef
    Nishi M, Irifune T, Tsuchiya J, Tange Y, Nishihara Y, Fujino K, Higo Y (2014) Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nat Geosci 7:224–227CrossRef
    Ohtani E, Litasov K (2006) The effect of water on mantle phase transitions. Rev Miner Geochem 62:396–420CrossRef
    Ohtani E, Litasov K, Hosoya T, Kubo T, Kondo T (2004) Water transport into the deep mantle and formation of a hydrous transition zone. Phys Earth Planet Inter 143–144:255–269CrossRef
    Oishi R, Yonemura M, Nishimaki Y, Torii S, Hoshikawa A, Ishigaki T, Morishima T, Mori K, Kamiyama T (2009) Rietveld analysis software for J-PARC. Nucl Instr Meth Phys Res A 600:94–96CrossRef
    Okuchi T, Yoshida M, Ohno Y, Tomioka N, Purevjav N, Osakabe T, Harjo S, Abe J, Aizawa K, Sasaki S (2013) Pulsed neutron powder diffraction at high pressure by a capacity-increased sapphire anvil cell. High Press Res 33:777–786CrossRef
    Okuchi T, Tomioka N, Purevjav N, Abe J, Harjo S, Gong W (2014) Structure refinement of sub-cubic-mm volume sample at high pressures by pulsed neutron powder diffraction: application to brucite in an opposed anvil cell. High Press Res 34:273–280CrossRef
    Okuchi T, Hoshikawa A, Ishigaki T (2015a) Forge-hardened TiZr null-matrix alloy for neutron scattering under extreme conditions. Metals 5:2340–2350CrossRef
    Okuchi T, Purevjav P, Tomioka N, Lin JF, Kuribayashi T, Schoneveld L, Hwang H, Sakamoto N, Kawasaki N, Yurimoto H (2015b) Synthesis of large and homogeneous single crystals of water-bearing minerals by slow cooling at deep-mantle pressures. Am Miner 100:1483–1492CrossRef
    Pacalo REG, Parise JB (1992) Crystal structure of superhydrous B, a hydrous magnesium silicate synthesized at 1400 °C and 20 GPa. Am Miner 77:681–684
    Parise JB, Leinenweber K, Weidner DJ, Tan K, Von Dreele RB (1994) Pressure-induced H bonding: neutron diffraction study of brucite, Mg(OD)2, to 9.3 GPa. Am Miner 79:193–196
    Purevjav N, Okuchi T, Tomioka N, Abe J, Harjo S (2014) Hydrogen site analysis of hydrous ringwoodite in mantle transition zone by pulsed neutron diffraction. Geophys Res Lett. doi:10.​1002/​2014GL061448
    Raugei S, Silvestrelli PL, Parrinello M (1999) Pressure-induced frustration and disorder in Mg(OH)2 and Ca(OH)2. Phys Rev Lett 83:2222–2225CrossRef
    Shieh SR, Mao HK, Konzett J, Hemley RJ (2000) In-situ high pressure X-ray diffraction of phase E to 15 GPa. Am Miner 85:765–769CrossRef
    Smyth JR (2006) Hydrogen in high pressure silicate and oxide mineral structures. Rev Miner Geochem 62:85–115CrossRef
    Suzuki A, Ohtani E, Kondo T, Kuribayashi T (2001) Neutron diffraction study of hydrous phase G: hydrogen in the lower mantle hydrous silicate, phase G. Geophys Res Lett 28:3987–3990CrossRef
    Trots DM, Kurnosov A, Manthilake MAGM, Ovsyannikov SV, Akselrud LG, Hansen T, Smyth JR, Frost DJ (2013) The determination of hydrogen positions in superhydrous phase B. Am Miner 98:1688–1692CrossRef
    Uchiyama H, Kuribayashi T, Kudoh Y (2011) Estimation of hydrogen position in (Fe, Al)-bearing phase E structure using single-crystal diffraction data. Photon Fact Act Rep B 28:197
    Yang H, Prewitt CT, Frost DJ (1997) Crystal structure of the dense hydrous magnesium silicate, phase D. Am Miner 82:651–654CrossRef
    Zigan F, Rothbauer R (1967) Neutronenbeugungsmessungen am Brucit. Neues JB Miner Monat 137–143
  • 作者单位:Naotaka Tomioka (1) (2)
    Takuo Okuchi (1)
    Narangoo Purevjav (1)
    Jun Abe (3) (4)
    Stefanus Harjo (3)

    1. Institute for Study of the Earth’s Interior, Okayama University, 827 Yamada, Misasa, Tottori, 682-0193, Japan
    2. Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, 200 Monobe Otsu, Nankoku, Kochi, 783-8502, Japan
    3. J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki, 319-1195, Japan
    4. Research Center for Neutron Science and Technology, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Naka, Ibaraki, 319-1106, Japan
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Mineralogy
    Crystallography
    Geochemistry
    Mineral Resources
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2021
文摘
Hydrogen site positions and occupancy in the crystal structure of dense hydrous magnesium silicate (DHMS) phase E were determined for the first time by pulsed neutron powder diffraction. A fully deuterated pure phase E powder sample, which had space group \(R\overline{3} m\) and lattice parameters of a = 2.97065(8) Å and c = 13.9033(4) Å, was synthesized at 15 GPa and 1100 °C. Through quantitative evaluation of refined structure parameters obtained with sufficient spatial resolution and very high signal-to-background ratio, we conclude that the O–D dipoles in the refined phase E structure are tilted by 24° from the direction normal to the layers of edge-shared MgO6 octahedra (octahedral layers). The tilted dipole structure of phase E is in remarkable contrast to that of brucite, Mg(OH)2, which has dipoles exactly normal to the octahedral layer. This contrast exists because the O–Si–O bonding unique in the phase E structure connects two adjacent octahedral layers and thereby reduces the interlayer O···O distance. This shrinkage of the interlayer distance induces the tilting of the O–D dipole and also generates unique O–D···O hydrogen bonding connecting all the layers in the phase E structure.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700