Calcitization of aragonitic bryozoans in Cenozoic tropical carbonates from East Kalimantan, Indonesia
详细信息    查看全文
  • 作者:Emanuela Di Martino ; Paul D. Taylor ; Anatoliy B. Kudryavtsev ; J. William Schopf
  • 关键词:Biomineralogy ; Calcitization ; Diagenesis ; Cheilostomata ; Miocene
  • 刊名:Facies
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:62
  • 期:2
  • 全文大小:6,893 KB
  • 参考文献:Al-Aasn IS, Veizer J (1986) Diagenetic stabilization of aragonite and low-magnesium calcite, I. Trace elements in rudists. J Sediment Petrol 56:138–152
    Allen GP, Chambers JLC (1998) Sedimentation in the Modern and Miocene Mahakam Delta. Jakarta, Indonesia, Indonesian Petroleum Association
    Benedix G, Jacob DE, Taylor PD (2014) Bimineralic bryozoan skeletons: a comparison of three modern genera. Facies 60:389–403CrossRef
    Brachert TC, Dullo WC (2000) Shallow burial diagenesis of skeletal carbonates: selective loss of aragonite shell material (Miocene to Recent, Queensland Plateau and Queensland Trough, NE Australia)—implications for shallow cool-water carbonates. Sediment Geol 136:169–187CrossRef
    Bush AM, Bambach RK (2004) Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. J Geol 112:625–642CrossRef
    Caron V, Nelson CS (2009) Diversity of neomorphic fabrics in New Zealand Plio-Pleistocene cool-water limestones: insights into aragonite alteration pathways and controls. J Sediment Res 79:226–246CrossRef
    Cherns L, Wright P (2000) Missing molluscs as evidence of large-scale, early skeletal aragonite dissolution in a Silurian sea. Geology 28:791–794CrossRef
    Cherns LJ, Wheeley R, Wright VP (2008) Taphonomic windows and molluscan preservation. Palaeogeog Palaeoclimatol Palaeoecol 270:220–229CrossRef
    Folk RL (1965) Some aspects of recrystallization in ancient limestones. In: Pray LC, Murray RC (eds) Dolomitization and limestone diagenesis: a symposium, vol. 13. Soc Econ Paleontol Mineral Spec Publ, pp 14–48
    Foote M, Crampton JS, Beu AG, Nelson CS (2015) Aragonite bias, and lack of bias, in the fossil record: lithological, environmental, and ecological controls. Paleobiology 41:245–265CrossRef
    Gorodiski A, Balavoine P (1962) Bryozoaires Crétacés et Eocènes du Senegal. Bull Bur Rech Géol Min 4:1–16
    Hall R, Nichols G (2002) Cenozoic sedimentation and tectonics in Borneo: climatic influences on orogenesis. In: Jones SJ, Frostick L (eds) Sediment flux to basins: causes, controls and consequences, vol. 191. Geol Soc London Spec Publ, pp 5–22
    Hendry JP, Ditchfield PW, Marshall JD (1995) Two-stage neomorphism of Jurassic aragonitic bivalves: implications for early diagenesis. J Sed Res 65:214–224
    James NP (1974) Diagenesis of scleractinian corals in the subaerial vadose environment. J Paleontol 48:785–799
    Jordan N, Allison PA, Hill J, Sutton MD (2015) Not all aragonitic molluscs are missing: taphonomy and significance of a unique shelly lagerstätte from the Jurassic of SW Britain. Lethaia. doi:10.​1111/​let.​12126
    Kidwell SM (2005) Shell composition has no net impact on large scale evolutionary patterns in mollusks. Science 307:914–917CrossRef
    Kidwell SM, Best MMR, Kaufmann RS (2005) Taphonomic trade-offs in tropical marine death assemblages: differential time averaging, shell loss, and probable bias in siliciclastic vs. carbonate facies. Geology 33:729–732CrossRef
    Kowalewski M, Gürs K, Nebelsick JH, Oschmann W, Piller WE, Hoffmeister AP (2002) Multivariate hierarchical analyses of Miocene mollusk assemblages of Europe: paleogeographic, paleoecological, and biostratigraphic implications. Geol Soc Am Bull 114:239–256CrossRef
    Lokier SW, Wilson MEJ, Burton LM (2009) Marine biota response to clastic sediment influx: a quantitative approach. Palaeogeogr Palaeoclimatol Palaeoecol 281:25–42CrossRef
    Maliva RG (1995) Recurrent neomorphic and cement microtextures from different diagenetic environments, Quaternary to Late Neogene carbonates, Great Bahama Bank. Sediment Geol 97:1–7CrossRef
    Maliva RG (1998) Skeletal aragonite neomorphism—quantitative modelling of a two-water diagenetic system. Sediment Geol 121:179–190CrossRef
    Maliva RG, Dickson JAD (1992) The mechanism of skeletal aragonite neomorphism: evidence from neomorphosed mollusks from the upper Purbeck Formation (Late Jurassic–Early Cretaceous), southern England. Sediment Geol 76:221–232CrossRef
    Maliva RG, Missimer TM, Dickson JAD (2000) Skeletal aragonite neomorphism in Plio-Pleistocene sandy limestones and sandstones, Hollywood, Florida, USA. Sediment Geol 136:147–154CrossRef
    Marshall N, Novak V, Cibaj I, Krijgsman W, Renema W, Young J, Fraser N, Limbong A, Morley R (2015) Dating Borneo deltaic deluge: middle Miocene progradation of the Mahakam Delta. Palaios 30:7–25CrossRef
    Martin GD, Wilkinson BH, Lohmann KC (1985) The role of skeletal porosity in aragonite neomorphism—Strombus and Montastrea from the Pleistocene Key Largo Limestone, Florida. J Sediment Petrol 56:194–203
    McAlester AL (1962) Mode of preservation in early Paleozoic pelecypods and its morphologic and ecologic significance. J Paleontol 36:69–73
    Moss SJ, Chambers JLC (1999) Tertiary facies architecture in the Kutai Basin, Kalimantan, Indonesia. J Asian Earth Sci 17:157–181CrossRef
    Moss SJ, Wilson MEJ (1998) Biogeographic implications of the Tertiary paleogeographic evolution of Sulawesi and Borneo. In: Hall R, Holloway JD (eds) Biogeography and geological evolution of Southeast Asia. Backhuys Publishers, Leiden, pp 133–163
    Novak V, Renema W (2015) Larger foraminifera as environmental discriminators in Miocene mixed carbonate-siliciclastic systems. Palaios 30:40–52CrossRef
    Novak V, Santodomingo N, Rösler A, Di Martino E, Braga JC, Taylor PD, Johnson KG, Renema W (2013) Environmental reconstruction of a late Burdigalian (Miocene) patch reef in deltaic deposits (East Kalimantan, Indonesia). Palaeogeogr Palaeoclimatol Palaeoecol 374:110–122CrossRef
    Pingitore NE Jr (1970) Diagenesis and porosity modification in Acropora palmata, Pleistocene of Barbados, West Indies. J Sediment Res 40:712–721
    Pingitore NE Jr (1976) Vadose and phreatic diagenesis: processes, products and their recognition in corals. J Sediment Res 46:985–1006
    Rabier C, Anguy Y, Cabioch G, Genthon P (2008) Characterization of various stages of calcitization in Porites sp. corals from uplifted reefs—case studies from New Caledonia, Vanuatu, and Futuna (South-West Pacific). Sediment Geol 211:73–86CrossRef
    Rehman J, Jones B, Hagan TH, Coniglio M (1994) The influence of sponge borings on aragonite-to-calcite inversion in Late Pleistocene Strombus gigas from Grand Cayman, British west Indies. J Sediment Res 64:174–179
    Sandberg PA (1975) Bryozoan diagenesis: bearing on the nature of the original skeleton of rugose corals. J Paleontol 49:587–606
    Sandberg PA, Hudson JD (1983) Aragonite relic preservation in Jurassic calcite-replaced bivalves. Sedimentology 30:879–892CrossRef
    Santodomingo N, Novak V, Pretković V, Marshall N, Di Martino E, Lo Giudice Capelli E, Rösler A, Reich S, Braga JC, Renema W, Johnson KG (2015) A diverse patch reef from turbid habitats in the middle Miocene (East Kalimantan, Indonesia). Palaios 30:128–149CrossRef
    Smith AM, Key MM Jr, Gordon DP (2006) Skeletal mineralogy of bryozoans: taxonomic and temporal patterns. Earth-Sci Rev 78:287–306CrossRef
    Sorby HC (1879) The structure and origin of limestones. Proc Geol Soc London 35:56–95
    Taylor PD (2012) Identity of Mesosecos Faura & Canu, 1917, a neglected early genus of free-living Cupuladriidae (Bryozoa, Cheilostomata) from the Spanish Eocene. Batalleria 17:32–38
    Taylor PD, Di Martino E (2014) Why is the tropical Cenozoic fossil record so poor for bryozoans. In: Rosso A, Wyse Jackson PN, Porter J (eds) Bryozoan Studies 2013, Studi Trent Sci Nat, pp 249–257
    Taylor PD, Kudryavtsev AB, Schopf JW (2008) Calcite and aragonite distributions in the skeletons of bimineralic bryozoans as revealed by Raman spectroscopy. Invertebr Biol 127:87–97CrossRef
    Taylor PD, James NP, Bone Y, Kuklinski P, Kyser TK (2009) Evolving mineralogy of cheilostome bryozoans. Palaios 24:440–452CrossRef
    Taylor PD, James NP, Phillips G (2014) Mineralogy of cheilostome bryozoans across the Eocene–Oligocene boundary in Mississippi, USA. Palaeobiodiversity Palaeoenvironments 94:425–438CrossRef
    Tomašových A, Schlögl J (2008) Analyzing variations in cephalopod abundances in shell concentrations: the combined effects of production and density-dependent cementation rates. Palaios 23:648–666CrossRef
    Wilson MEJ (2005) Development of equatorial delta-front patch reef during the Neogene, Borneo. J Sediment Res 75:116–134
    Wilson MEJ, Moss SJ (1999) Cenozoic paleogeographic evolution of Sulawesi and Borneo. Palaeogeogr Palaeoclimatol Palaeoecol 145:303–307CrossRef
    Wilson MEJ, Chambers JLC, Manning C, Nas DS (2012) Spatio-temporal evolution of a temporary carbonate platform margin and adjacent basinal deposits. Sediment Geol 271:1–27
    Wright P, Cherns L, Hodges P (2003) Missing molluscs: field testing taphonomic loss in the Mesozoic through early large-scale aragonite dissolution. Geology 31:211–214CrossRef
  • 作者单位:Emanuela Di Martino (1)
    Paul D. Taylor (1)
    Anatoliy B. Kudryavtsev (2)
    J. William Schopf (2) (3)

    1. Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
    2. Center for the Study of Evolution and the Origin of Life (Institute of Geophysics and Planetary Physics) and NASA Astrobiology Institute, University of California, Los Angeles, CA, 90095-1567, USA
    3. Department of Earth and Space Sciences, Molecular Biology Institute, University of California, Los Angeles, CA, 90095-1567, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Sedimentology
    Biogeosciences
    Geochemistry
    Paleontology
    Ecology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1612-4820
文摘
Aragonite is commonly lost during the diagenesis of carbonate rocks, producing a significant bias in the fossil record. However, taphonomic loss of aragonitic biota can be nullified when skeletal aragonite is replaced by calcite. Here we report calcification of the originally aragonitic skeletons of two cheilostome bryozoan taxa—Reussirella sp. and Reptadeonella toddi—in muddy reefs from the Miocene of East Kalimantan. The calcitic composition of these Miocene fossils is shown using Raman spectroscopy, which enabled precise in situ analysis of skeletal walls without contamination from sediment or chamber-filling cement. Compared with Recent and fossil relatives preserved in original acicular aragonite, the calcitized bryozoans have skeletons with blocky microstructures, undulose extinction patterns, and small patches of highly birefringent acicular crystals that may be aragonite relics. Calcitization of the bryozoans as well as scleractinian corals in the East Kalimantan Miocene reefs was probably made possible because of the high input of fine-grained clastic sediments that partially sealed the buried skeletons, although other factors must be invoked to explain the lack of calcitized molluscs in the same reefs. A general conclusion from this study is that not all bryozoans preserved in deposits from which aragonitic molluscs have been lost through diagenetic dissolution possessed original skeletons of calcite. The potential for selective loss of molluscs but not bryozoans and corals must be taken into account during biofacies analysis. Keywords Biomineralogy Calcitization Diagenesis Cheilostomata Miocene

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700