Blood-based signatures in type 1 diabetes
详细信息    查看全文
  • 作者:Susanne M. Cabrera ; Yi-Guang Chen ; William A. Hagopian ; Martin J. Hessner
  • 关键词:Biomarker ; Gene expression profiling ; Innate immunity ; Microarray ; Review ; Type 1 diabetes
  • 刊名:Diabetologia
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:59
  • 期:3
  • 页码:414-425
  • 全文大小:885 KB
  • 参考文献:1.Kimpimaki T, Kupila A, Hamalainen AM et al (2001) The first signs of beta-cell autoimmunity appear in infancy in genetically susceptible children from the general population: the Finnish Type 1 Diabetes Prediction and Prevention Study. J Clin Endocrinol Metab 86:4782–4788PubMed
    2.Todd JA (2010) Etiology of type 1 diabetes. Immunity 32:457–467PubMed CrossRef
    3.Morran MP, Vonberg A, Khadra A, Pietropaolo M (2015) Immunogenetics of type 1 diabetes mellitus. Mol Asp Med 42:42–60CrossRef
    4.Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC (2005) Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 48:2221–2228PubMed CrossRef
    5.Akirav E, Kushner JA, Herold KC (2008) Beta-cell mass and type 1 diabetes: going, going, gone? Diabetes 57:2883–2888PubMedCentral PubMed CrossRef
    6.Thunander M, Petersson C, Jonzon K et al (2008) Incidence of type 1 and type 2 diabetes in adults and children in Kronoberg, Sweden. Diabetes Res Clin Pract 82:247–255PubMed CrossRef
    7.Haller MJ, Atkinson MA, Schatz D (2005) Type 1 diabetes mellitus: etiology, presentation, and management. Pediatr Clin N Am 52:1553–1578CrossRef
    8.Maahs DM, West NA, Lawrence JM, Mayer-Davis EJ (2010) Epidemiology of type 1 diabetes. Endocrinol Metab Clin N Am 39:481–497CrossRef
    9.Liese AD, D'Agostino RB Jr, Hamman RF et al (2006) The burden of diabetes mellitus among US youth: prevalence estimates from the SEARCH for Diabetes in Youth Study. Pediatrics 118:1510–1518PubMed CrossRef
    10.Dabelea D, Bell RA, D'Agostino RB Jr et al (2007) Incidence of diabetes in youth in the United States. JAMA 297:2716–2724PubMed CrossRef
    11.Steck AK, Rewers MJ (2011) Genetics of type 1 diabetes. Clin Chem 57:176–185PubMed CrossRef
    12.Gough SC, Simmonds MJ (2007) The HLA region and autoimmune disease: associations and mechanisms of action. Curr Genomics 8:453–465PubMedCentral PubMed CrossRef
    13.Mangalam AK, Taneja V, David CS (2013) HLA class II molecules influence susceptibility versus protection in inflammatory diseases by determining the cytokine profile. J Immunol 190:513–518PubMedCentral PubMed CrossRef
    14.Redondo MJ, Fain PR, Eisenbarth GS (2001) Genetics of type 1A diabetes. Recent Prog Horm Res 56:69–89PubMed CrossRef
    15.Onengut-Gumuscu S, Chen WM, Burren O et al (2015) Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet 47:381–386PubMedCentral PubMed CrossRef
    16.Patterson CC, Gyurus E, Rosenbauer J et al (2012) Trends in childhood type 1 diabetes incidence in Europe during 1989-2008: evidence of non-uniformity over time in rates of increase. Diabetologia 55:2142–2147PubMed CrossRef
    17.Vaarala O, Atkinson MA, Neu J (2008) The "perfect storm" for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes 57:2555–2562PubMedCentral PubMed CrossRef
    18.Atkinson MA, Chervonsky A (2012) Does the gut microbiota have a role in type 1 diabetes? Early evidence from humans and animal models of the disease. Diabetologia 55:2868–2877PubMedCentral PubMed CrossRef
    19.Fourlanos S, Varney MD, Tait BD et al (2008) The rising incidence of type 1 diabetes is accounted for by cases with lower-risk human leukocyte antigen genotypes. Diabetes Care 31:1546–1549PubMedCentral PubMed CrossRef
    20.Borchers AT, Uibo R, Gershwin ME (2010) The geoepidemiology of type 1 diabetes. Autoimmun Rev 9:A355–A365PubMed CrossRef
    21.Schneider DA, von Herrath MG (2013) Viruses and type 1 diabetes: a dynamic labile equilibrium. Diabetes Manag (Lond) 3:217–223CrossRef
    22.Jaidane H, Sauter P, Sane F, Goffard A, Gharbi J, Hober D (2010) Enteroviruses and type 1 diabetes: towards a better understanding of the relationship. Rev Med Virol 20:265–280PubMed CrossRef
    23.Kahn HS, Morgan TM, Case LD et al (2009) Association of type 1 diabetes with month of birth among U.S. youth: the SEARCH for Diabetes in Youth Study. Diabetes Care 32:2010–2015PubMedCentral PubMed CrossRef
    24.Moltchanova EV, Schreier N, Lammi N, Karvonen M (2009) Seasonal variation of diagnosis of type 1 diabetes mellitus in children worldwide. Diabet Med 26:673–678PubMed CrossRef
    25.Yeung WC, Rawlinson WD, Craig ME (2011) Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ 342:d35PubMedCentral PubMed CrossRef
    26.Richardson SJ, Leete P, Bone AJ, Foulis AK, Morgan NG (2013) Expression of the enteroviral capsid protein VP1 in the islet cells of patients with type 1 diabetes is associated with induction of protein kinase R and downregulation of Mcl-1. Diabetologia 56:185–193PubMed CrossRef
    27.Laitinen OH, Honkanen H, Pakkanen O et al (2014) Coxsackievirus B1 is associated with induction of beta-cell autoimmunity that portends type 1 diabetes. Diabetes 63:446–455PubMed CrossRef
    28.Anagandula M, Richardson SJ, Oberste MS et al (2014) Infection of human islets of Langerhans with two strains of Coxsackie B virus serotype 1: assessment of virus replication, degree of cell death and induction of genes involved in the innate immunity pathway. J Med Virol 86:1402–1411PubMed CrossRef
    29.Tracy S, Smithee S, Alhazmi A, Chapman N (2015) Coxsackievirus can persist in murine pancreas by deletion of 5' terminal genomic sequences. J Med Virol 87:240–247PubMed CrossRef
    30.Gerstein HC (1994) Cow's milk exposure and type I diabetes mellitus. A critical overview of the clinical literature. Diabetes Care 17:13–19PubMed CrossRef
    31.Knip M, Virtanen SM, Seppa K et al (2010) Dietary intervention in infancy and later signs of beta-cell autoimmunity. N Engl J Med 363:1900–1908PubMedCentral PubMed CrossRef
    32.Norris JM, Barriga K, Klingensmith G et al (2003) Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA 290:1713–1720PubMed CrossRef
    33.Ziegler AG, Schmid S, Huber D, Hummel M, Bonifacio E (2003) Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. JAMA 290:1721–1728PubMed CrossRef
    34.Beyerlein A, Chmiel R, Hummel S, Winkler C, Bonifacio E, Ziegler AG (2014) Timing of gluten introduction and islet autoimmunity in young children: updated results from the BABYDIET study. Diabetes Care 37:e194–e195PubMed CrossRef
    35.Knip M, Akerblom HK, Becker D et al (2014) Hydrolyzed infant formula and early beta-cell autoimmunity: a randomized clinical trial. JAMA 311:2279–2287PubMedCentral PubMed CrossRef
    36.Benson AK, Kelly SA, Legge R et al (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A 107:18933–18938PubMedCentral PubMed CrossRef
    37.Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484PubMedCentral PubMed CrossRef
    38.Khachatryan ZA, Ktsoyan ZA, Manukyan GP, Kelly D, Ghazaryan KA, Aminov RI (2008) Predominant role of host genetics in controlling the composition of gut microbiota. PLoS One 3, e3064PubMedCentral PubMed CrossRef
    39.Murri M, Leiva I, Gomez-Zumaquero JM et al (2013) Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med 11:46PubMedCentral PubMed CrossRef
    40.Mejia-Leon ME, Petrosino JF, Ajami NJ, Dominguez-Bello MG, de la Barca AM (2014) Fecal microbiota imbalance in Mexican children with type 1 diabetes. Sci Rep 4:3814PubMedCentral PubMed CrossRef
    41.Endesfelder D, zu Castell W, Ardissone A et al (2014) Compromised gut microbiota networks in children with anti-islet cell autoimmunity. Diabetes 63:2006–2014PubMed CrossRef
    42.Giongo A, Gano KA, Crabb DB et al (2011) Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 5:82–91PubMedCentral PubMed CrossRef
    43.Kostic AD, Gevers D, Siljander H et al (2015) The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 17:260–273PubMed CrossRef
    44.Brown CT, Davis-Richardson AG, Giongo A et al (2011) Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 6, e25792PubMedCentral PubMed CrossRef
    45.Hoeppli RE, Wu D, Cook L, Levings MK (2015) The environment of regulatory T cell biology: cytokines, metabolites, and the microbiome. Front Immunol 6:61PubMedCentral PubMed CrossRef
    46.Gomes AC, Bueno AA, de Souza RG, Mota JF (2014) Gut microbiota, probiotics and diabetes. Nutr J 13:60PubMedCentral PubMed CrossRef
    47.Li X, Atkinson MA (2015) The role for gut permeability in the pathogenesis of type 1 diabetes—a solid or leaky concept? Pediatr Diabetes 16:485–492PubMed CrossRef
    48.Oresic M, Simell S, Sysi-Aho M et al (2008) Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. J Exp Med 205:2975–2984PubMedCentral PubMed CrossRef
    49.Winter WE, Schatz DA (2011) Autoimmune markers in diabetes. Clin Chem 57:168–175PubMed CrossRef
    50.Kupila A, Keskinen P, Simell T et al (2002) Genetic risk determines the emergence of diabetes-associated autoantibodies in young children. Diabetes 51:646–651PubMed CrossRef
    51.Ziegler AG, Rewers M, Simell O et al (2013) Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 309:2473–2479PubMed CrossRef
    52.Roep BO, Peakman M (2012) Antigen targets of type 1 diabetes autoimmunity. Cold Spring Harb Perspect Med 2:a007781PubMedCentral PubMed CrossRef
    53.Roberts KG, Mullighan CG (2015) Genomics in acute lymphoblastic leukaemia: insights and treatment implications. Nat Rev Clin Oncol 12:344–357PubMed CrossRef
    54.Blankley S, Berry MP, Graham CM, Bloom CI, Lipman M, O'Garra A (2014) The application of transcriptional blood signatures to enhance our understanding of the host response to infection: the example of tuberculosis. Philos Trans R Soc Lond B Biol Sci 369:20130427PubMedCentral PubMed CrossRef
    55.Pascual V, Chaussabel D, Banchereau J (2010) A genomic approach to human autoimmune diseases. Annu Rev Immunol 28:535–571PubMedCentral PubMed CrossRef
    56.Kirou KA, Gkrouzman E (2013) Anti-interferon alpha treatment in SLE. Clin Immunol 148:303–312PubMed CrossRef
    57.Burczynski ME, Peterson RL, Twine NC et al (2006) Molecular classification of Crohn's disease and ulcerative colitis patients using transcriptional profiles in peripheral blood mononuclear cells. J Mol Diagn 8:51–61PubMedCentral PubMed CrossRef
    58.Lee JC, Lyons PA, McKinney EF et al (2011) Gene expression profiling of CD8+ T cells predicts prognosis in patients with Crohn disease and ulcerative colitis. J Clin Invest 121:4170–4179PubMedCentral PubMed CrossRef
    59.Reynier F, Pachot A, Paye M et al (2010) Specific gene expression signature associated with development of autoimmune type-I diabetes using whole-blood microarray analysis. Genes Immun 11:269–278PubMed CrossRef
    60.Elo LL, Mykkanen J, Nikula T et al (2010) Early suppression of immune response pathways characterizes children with prediabetes in genome-wide gene expression profiling. J Autoimmun 35:70–76PubMed CrossRef
    61.Kallionpaa H, Elo LL, Laajala E et al (2014) Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility. Diabetes 63:2402–2414PubMed CrossRef
    62.Jin Y, Sharma A, Bai S et al (2014) Risk of type 1 diabetes progression in islet autoantibody-positive children can be further stratified using expression patterns of multiple genes implicated in peripheral blood lymphocyte activation and function. Diabetes 63:2506–2515PubMedCentral PubMed CrossRef
    63.Rassi DM, Junta CM, Fachin AL et al (2006) Metabolism genes are among the differentially expressed ones observed in lymphomononuclear cells of recently diagnosed type 1 diabetes mellitus patients. Ann N Y Acad Sci 1079:171–176PubMed CrossRef
    64.Kaizer EC, Glaser CL, Chaussabel D, Banchereau J, Pascual V, White PC (2007) Gene expression in peripheral blood mononuclear cells from children with diabetes. J Clin Endocrinol Metab 92:3705–3711PubMed CrossRef
    65.Stechova K, Kolar M, Blatny R et al (2012) Healthy first-degree relatives of patients with type 1 diabetes exhibit significant differences in basal gene expression pattern of immunocompetent cells compared to controls: expression pattern as predeterminant of autoimmune diabetes. Scand J Immunol 75:210–219PubMed CrossRef
    66.Evangelista AF, Collares CV, Xavier DJ et al (2014) Integrative analysis of the transcriptome profiles observed in type 1, type 2 and gestational diabetes mellitus reveals the role of inflammation. BMC Med Genomics 7:28PubMedCentral PubMed CrossRef
    67.Jin Y, Sharma A, Carey C et al (2013) The expression of inflammatory genes is upregulated in peripheral blood of patients with type 1 diabetes. Diabetes Care 36:2794–2802PubMedCentral PubMed CrossRef
    68.Ferreira RC, Guo H, Coulson RM et al (2014) A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes. Diabetes 63:2538–2550PubMedCentral PubMed CrossRef
    69.Orban T, Kis J, Szereday L et al (2007) Reduced CD4+ T-cell-specific gene expression in human type 1 diabetes mellitus. J Autoimmun 28:177–187PubMed CrossRef
    70.Padmos RC, Schloot NC, Beyan H et al (2008) Distinct monocyte gene-expression profiles in autoimmune diabetes. Diabetes 57:2768–2773PubMedCentral PubMed CrossRef
    71.Irvine KM, Gallego P, An X et al (2012) Peripheral blood monocyte gene expression profile clinically stratifies patients with recent-onset type 1 diabetes. Diabetes 61:1281–1290PubMedCentral PubMed CrossRef
    72.Beyan H, Drexhage RC, van der Heul Nieuwenhuijsen L et al (2010) Monocyte gene-expression profiles associated with childhood-onset type 1 diabetes and disease risk: a study of identical twins. Diabetes 59:1751–1755PubMedCentral PubMed CrossRef
    73.Pascual V, Allantaz F, Arce E, Punaro M, Banchereau J (2005) Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J Exp Med 201:1479–1486PubMedCentral PubMed CrossRef
    74.Khaenam P, Rinchai D, Altman MC et al (2014) A transcriptomic reporter assay employing neutrophils to measure immunogenic activity of septic patients' plasma. J Transl Med 12:65PubMedCentral PubMed CrossRef
    75.Jia S, Kaldunski M, Jailwala P et al (2011) Use of transcriptional signatures induced in lymphoid and myeloid cell lines as an inflammatory biomarker in type 1 diabetes. Physiol Genomics 43:697–709PubMedCentral PubMed CrossRef
    76.Jackson AM, Kanak MA, Grishman EK, Chaussabel D, Levy MF, Naziruddin B (2012) Gene expression changes in human islets exposed to type 1 diabetic serum. Islets 4:312–319PubMedCentral PubMed CrossRef
    77.Cabrera SM, Henschel AM, Hessner MJ (2015) Innate inflammation in type 1 diabetes. Transl Res. doi:10.​1016/​j.​trsl.​2015.​04.​011 PubMed
    78.Chen YG, Cabrera SM, Jia S et al (2014) Molecular signatures differentiate immune states in type 1 diabetic families. Diabetes 63:3960–3973PubMedCentral PubMed CrossRef
    79.Chen YG, Mordes JP, Blankenhorn EP et al (2013) Temporal induction of immunoregulatory processes coincides with age-dependent resistance to viral-induced type 1 diabetes. Genes Immun 14:387–400PubMedCentral PubMed CrossRef
    80.Levy H, Wang X, Kaldunski M et al (2012) Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes. Genes Immun 13:593–604PubMedCentral PubMed CrossRef
    81.Wang X, Jia S, Geoffrey R, Alemzadeh R, Ghosh S, Hessner MJ (2008) Identification of a molecular signature in human type 1 diabetes mellitus using serum and functional genomics. J Immunol 180:1929–1937PubMed CrossRef
    82.Aly TA, Ide A, Humphrey K et al (2005) Genetic prediction of autoimmunity: initial oligogenic prediction of anti-islet autoimmunity amongst DR3/DR4-DQ8 relatives of patients with type 1A diabetes. J Autoimmun 25(Suppl):40–45PubMed CrossRef
    83.Dogan Y, Akarsu S, Ustundag B, Yilmaz E, Gurgoze MK (2006) Serum IL-1β, IL-2, and IL-6 in insulin-dependent diabetic children. Mediat Inflamm 2006:59206CrossRef
    84.Hussain MJ, Maher J, Warnock T, Vats A, Peakman M, Vergani D (1998) Cytokine overproduction in healthy first degree relatives of patients with IDDM. Diabetologia 41:343–349PubMed CrossRef
    85.Meyers AJ, Shah RR, Gottlieb PA, Zipris D (2010) Altered Toll-like receptor signaling pathways in human type 1 diabetes. J Mol Med (Berl) 88:1221–1231CrossRef
    86.Bradshaw EM, Raddassi K, Elyaman W et al (2009) Monocytes from patients with type 1 diabetes spontaneously secrete proinflammatory cytokines inducing Th17 cells. J Immunol 183:4432–4439PubMedCentral PubMed CrossRef
    87.Plesner A, Greenbaum CJ, Gaur LK, Ernst RK, Lernmark A (2002) Macrophages from high-risk HLA-DQB1*0201/*0302 type 1 diabetes mellitus patients are hypersensitive to lipopolysaccharide stimulation. Scand J Immunol 56:522–529PubMed CrossRef
    88.Kayserova J, Vcelakova J, Stechova K et al (2014) Decreased dendritic cell numbers but increased TLR9-mediated interferon-alpha production in first degree relatives of type 1 diabetes patients. Clin Immunol 153:49–55PubMed CrossRef
    89.Zhang Q, Fillmore TL, Schepmoes AA et al (2013) Serum proteomics reveals systemic dysregulation of innate immunity in type 1 diabetes. J Exp Med 210:191–203PubMedCentral PubMed CrossRef
    90.von Herrath M, Sanda S, Herold K (2007) Type 1 diabetes as a relapsing-remitting disease? Nat Rev Immunol 7:988–994CrossRef
    91.Petrich de Marquesini LG, Fu J, Connor KJ et al (2010) IFN-γ and IL-10 islet-antigen-specific T cell responses in autoantibody-negative first-degree relatives of patients with type 1 diabetes. Diabetologia 53:1451–1460PubMed CrossRef
    92.Pugliese A (2013) The multiple origins of type 1 diabetes. Diabet Med 30:135–146PubMed CrossRef
    93.Zhi W, Purohit S, Carey C, Wang M, She JX (2010) Proteomic technologies for the discovery of type 1 diabetes biomarkers. J Diabetes Sci Technol 4:993–1002PubMedCentral PubMed CrossRef
    94.Moulder R, Bhosale SD, Erkkila T et al (2015) Serum proteomes distinguish children developing type 1 diabetes in a cohort with HLA-conferred susceptibility. Diabetes 64:2265–2278PubMed CrossRef
    95.Burch TC, Morris MA, Campbell-Thompson M, Pugliese A, Nadler JL, Nyalwidhe JO (2015) Proteomic analysis of disease stratified human pancreas tissue indicates unique signature of type 1 diabetes. PLoS One 10, e0135663PubMedCentral PubMed CrossRef
    96.Simpson LJ, Ansel KM (2015) MicroRNA regulation of lymphocyte tolerance and autoimmunity. J Clin Invest 125:2242–2249PubMed CrossRef
    97.Nielsen LB, Wang C, Sorensen K et al (2012) Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res 2012:896362PubMedCentral PubMed
    98.Takahashi P, Xavier DJ, Evangelista AF et al (2014) MicroRNA expression profiling and functional annotation analysis of their targets in patients with type 1 diabetes mellitus. Gene 539:213–223PubMed CrossRef
    99.Akirav EM, Lebastchi J, Galvan EM et al (2011) Detection of beta cell death in diabetes using differentially methylated circulating DNA. Proc Natl Acad Sci U S A 108:19018–19023PubMedCentral PubMed CrossRef
    100.Fisher MM, Watkins RA, Blum J et al (2015) Elevations in circulating methylated and unmethylated preproinsulin DNA in new-onset type 1 diabetes. Diabetes 64:3867–3872PubMed CrossRef
    101.Herold KC, Usmani-Brown S, Ghazi T et al (2015) beta cell death and dysfunction during type 1 diabetes development in at-risk individuals. J Clin Invest 125:1163–1173PubMedCentral PubMed CrossRef
    102.Lebastchi J, Deng S, Lebastchi AH et al (2013) Immune therapy and beta-cell death in type 1 diabetes. Diabetes 62:1676–1680PubMedCentral PubMed CrossRef
    103.von Herrath MG, Fujinami RS, Whitton JL (2003) Microorganisms and autoimmunity: making the barren field fertile? Nat Rev Microbiol 1:151–157CrossRef
    104.Chen Z, Barbi J, Bu S et al (2013) The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity 39:272–285PubMed CrossRef
    105.van Loosdregt J, Fleskens V, Fu J et al (2013) Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity 39:259–271PubMedCentral PubMed CrossRef
    106.Kaldunski M, Jia S, Geoffrey R et al (2010) Identification of a serum-induced transcriptional signature associated with type 1 diabetes in the BioBreeding rat. Diabetes 59:2375–2385PubMedCentral PubMed CrossRef
    107.Bottazzo GF, Florin-Christensen A, Doniach D (1974) Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet 2:1279–1283PubMed CrossRef
    108.Cabrera SM, Wang X, Chen YG et al (2015) Interleukin-1 antagonism moderates the inflammatory state associated with type 1 diabetes during clinical trials conducted at disease onset. Eur J Immunol DOI:10.​1002/​eji.​201546005
    109.Woo W, LaGasse JM, Zhou Z et al (2000) A novel high-throughput method for accurate, rapid, and economical measurement of multiple type 1 diabetes autoantibodies. J Immunol Methods 244:91–103PubMed CrossRef
    110.Miyara M, Yoshioka Y, Kitoh A et al (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30:899–911PubMed CrossRef
    111.Eisenbarth GS (1986) Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med 314:1360–1368PubMed CrossRef
    112.Coppieters KT, von Herrath MG (2014) The type 1 diabetes signature: hardwired to trigger inflammation? Diabetes 63:3581–3583PubMed CrossRef
  • 作者单位:Susanne M. Cabrera (1) (2)
    Yi-Guang Chen (1) (2)
    William A. Hagopian (3)
    Martin J. Hessner (1) (2)

    1. The Max McGee National Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
    2. Section of Endocrinology, Department of Pediatrics, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
    3. Pacific Northwest Diabetes Research Institute, Seattle, WA, USA
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Internal Medicine
    Metabolic Diseases
    Human Physiology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0428
文摘
Type 1 diabetes mellitus is one of the most common chronic diseases in childhood. It develops through autoimmune destruction of the pancreatic beta cells and results in lifelong dependence on exogenous insulin. The pathogenesis of type 1 diabetes involves a complex interplay of genetic and environmental factors and has historically been attributed to aberrant adaptive immunity; however, there is increasing evidence for a role of innate inflammation. Over the past decade new methodologies for the analysis of nucleic acid and protein signals have been applied to type 1 diabetes. These studies are providing a new understanding of type 1 diabetes pathogenesis and have the potential to inform the development of new biomarkers for predicting diabetes onset and monitoring therapeutic interventions. In this review we will focus on blood-based signatures in type 1 diabetes, with special attention to both direct transcriptomic analyses of whole blood and immunocyte subsets, as well as plasma/serum-induced transcriptional signatures. Attention will also be given to proteomics, microRNA assays and markers of beta cell death. We will also discuss the results of blood-based profiling in type 1 diabetes within the context of the genetic and environmental factors implicated in the natural history of autoimmune diabetes. Keywords Biomarker Gene expression profiling Innate immunity Microarray Review Type 1 diabetes

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700