Novel Nystatin A1 derivatives exhibiting low host cell toxicity and antifungal activity in an in vitro model of oral candidosis
详细信息    查看全文
  • 作者:Joanna Boros-Majewska (1) (2)
    Natalia Salewska (2) (3)
    Edward Borowski (1) (2)
    S艂awomir Milewski (1)
    Sladjana Malic (4)
    Xiao-Qing Wei (5)
    Anthony J. Hayes (6)
    Melanie J. Wilson (5)
    David W. Williams (5)
  • 关键词:Candida albicans ; Antifungals ; Nystatin A1 ; Candidosis ; Oral infections ; Cytotoxicity
  • 刊名:Medical Microbiology and Immunology
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:203
  • 期:5
  • 页码:341-355
  • 全文大小:2,488 KB
  • 参考文献:1. Farah CS, Ashman RB, Challacombe SJ (2000) Oral candidosis. Clin Dermatol 18:553鈥?62 CrossRef
    2. Joint United Nations Programme on HIV/AIDS (UNAIDS) and World Health Organization (WHO) (2009) AIDS epidemic update: November 2009, Geneva, Switzerland
    3. Petersen PE (2008) Oral cancer prevention and control鈥攖he approach of the World Health Organization. Oral Oncol 45:454鈥?60 CrossRef
    4. World Health Organization (2013) Diabetes Programme: fact sheet N掳312. http://www.who.int/diabetes/en/. Updated March 2013, Geneva, Switzerland
    5. Mane A, Gaikwad S, Bembalkar S, Risbud A (2012) Increased expression of virulence attributes in oral / Candida albicans isolates from human immunodeficiency virus-positive individuals. J Med Microbiol 61:285鈥?90 CrossRef
    6. Davies AN, Brailsford SR, Beighton D (2006) Oral candidosis in patients with advanced cancer. Oral Oncol 42:698鈥?02 CrossRef
    7. Soysa NS, Samaranayake LP, Ellepola ANB (2005) Diabetes mellitus as a contributory factor in oral candidosis. Diabet Med 23:455鈥?59 CrossRef
    8. Zhu W, Filler SG (2010) Interactions of / Candida albicans with epithelial cells. Cell Microbiol 12:273鈥?82 CrossRef
    9. Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanisms. Virulence 4:119鈥?28 CrossRef
    10. Samaranayake LP, Keung Leung W, Jin L (2009) Oral mucosal fungal infections. Periodontol 2000 49:39鈥?9 CrossRef
    11. Williams D, Lewis M (2011) Pathogenesis and treatment of oral candidosis. J Oral Microbiol 3:5771 CrossRef
    12. Ellepola ANB, Samaranayake LP (2000) Oral candidal infections and antimycotics. Crit Rev Oral Biol Med 11:172鈥?98 CrossRef
    13. Lewis RE (2011) Current concepts in antifungal pharmacology. Mayo Clin Proc 86:805鈥?17 CrossRef
    14. Wakie膰 R, Prasad R, Morschh盲user J, Barchiesi F, Borowski E, Milewski S (2007) Voriconazole and multidrug resistance in / Candida albicans. Mycoses 50:109鈥?15 CrossRef
    15. Zotchev SB (2003) Polyene macrolide antibiotics and their applications in human therapy. Curr Med Chem 10:211鈥?23 CrossRef
    16. Pierce CG, Lopez-Ribot JL (2013) Candidiasis drug discovery and development: new approaches targeting virulence for discovering and identifying new drugs. Expert Opin Drug Discov 9:1117鈥?126 CrossRef
    17. Ch茅ron M, Cybulska B, Mazerski J, Grzybowska J, Czerwi艅ski A, Borowski E (1988) Quantitative structure-activity relationships in amphotericin B derivatives. Biochem Pharmacol 37:827鈥?36 CrossRef
    18. Baginski M, Czub J (2009) Amphotericin B and its new derivatives鈥攎ode of action. Curr Drug Metab 10:459鈥?69 CrossRef
    19. Volmer AA, Szpilman AM, Carreira EM (2010) Synthesis and biological evaluation of amphotericin B derivatives. Nat Prod Rep 27:1329鈥?349 CrossRef
    20. Paquet V, Volmer AA, Carreira EM (2008) Synthesis and in vitro biological properties of novel cationic derivatives of amphotericin B. Chemistry 14:2465鈥?481 CrossRef
    21. Borowski E, Salewska N, Boros-Majewska J, Milewska M, Wysocka M, Milewski S, Sk艂adanowski A, Treder A, Sadowska E, 艁acka I (2013) Semisynthetic derivatives of Nystatin A1. PCT/EP2013/054621; WO 2013/132014 A1 (12 September 2013)
    22. Schaller M, Sch盲fer W, Korting HC, Hube B (1998) Differential expression of secreted aspartyl proteinases in a model of human oral candidosis and in patient samples from the oral cavity. Mol Microbiol 29:605鈥?15 CrossRef
    23. Schaller M, Zakikhany K, Naglik JR, Weindl G, Hube B (2006) Models of oral and vaginal candidiasis based on in vitro reconstituted human epithelia. Nat Protoc 1:2767鈥?773 CrossRef
    24. Falkowski L, Kowszyk-Gindifer Z, Pl贸ciennik Z, Zieli艅ski J, Dahlig H, Golik J, Jakobs E, Ko艂odziejczyk P, Bylec E, Ro艣lik-Kami艅ska D, Wagner W, Pawlak J, Borowski E (1980) Salts of / N-glycosyl derivatives of polyene macrolides, especially / N-methylglucamine salts as well as the method of their preparation. Patent USA 4195172 A
    25. The National Committee for Clinical and Laboratory Standards (2002) Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-Second Edition M27-A2. NCCLS, 2002, Wayne, PA, USA
    26. Kim J, Sudbery P (2011) / Candida albicans, a major human fungal pathogen. J Microbiol 49:171鈥?77 CrossRef
    27. Dalle F, W盲chtler B, L鈥橭llivier C, Holland G, Bannert N, Wilson D, Labru猫re C, Bonnin A, Hube B (2010) Cellular interactions of / Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol 12:248鈥?71 CrossRef
    28. 艑mura S (1984) Macrolide Antibiotics: Chemistry, Biology, and Practice. Academic Press, Orlando
    29. Larson JL, Wallace TL, Tyl RW, Marr MC, Mayers CB, Cossum PA (2000) The reproductive and development toxicity of the antifungal drug Nyotran (liposomal Nystatin) in rats and rabbits. Toxicol Sci 53:421鈥?29 CrossRef
    30. Semis R, Polacheck I, Segal E (2010) Nystatin-intralipid preparation: characterization and in vitro activity against yeasts and molds. Mycopathologia 169:333鈥?41 CrossRef
    31. Arikan S, Rex JH (2001) Nystatin LF (Aronex/Abbott). Curr Opin Investig Drugs 2:488鈥?95
    32. Barrat G, Bretagne S (2007) Optimizing efficacy of Amphotericin B through nanomodification. Int J Nanomedicine 2:301鈥?13
    33. Semis R, Kagan S, Berdicevsky I, Polacheck I, Segal E (2013) Mechanism of activity and toxicity of Nystatin-intralipid. Med Mycol 51:422鈥?31 CrossRef
    34. Semis E, Nili SS, Munitz A, Zaslavsky Z, Polacheck I, Segal E (2012) Pharmacokinetics, tissue distribution and immunomodulatory effect of intralipid formulation of Nystatin in mice. J Antimicrob Chemother 67:1716鈥?721 CrossRef
    35. Brautaset T, Sletta H, Nedal A, Borgos SEF et al (2008) Improved antifungal polyene macrolides via engineering of the Nystatin biosynthetic genes in / Streptomyces noursei. Chem Biol 15:1198鈥?206 CrossRef
    36. Bruheim P, Borgos SE, Tsan P, Stella H, Ellingsen TE, Lancelin JM, Zotchev SB (2004) Chemical diversity of polyene macrolides produced by / Streptomyces noursei ATCC 11455 and recombinant strain ERD44 with genetically altered polyketide synthase NysC. Antimicrob Agents Chemother 48:4120鈥?129 CrossRef
    37. Caffrey P, Aparicio JF, Malpartida F, Zotchev SB (2008) Biosynthesis engineering of polyene macrolides towards generation of improved antifungal and antiparasitic agents. Curr Top Med Chem 8:639鈥?53 CrossRef
    38. Falk R, Domb AJ, Polacheck I (1999) A novel injectable water-soluble amphotericin B-arabinogalactan conjugate. Antimicrob Agents Chemother 43:1975鈥?981
    39. Szlinder-Richert J, Mazerski J, Cybulska B, Grzybowska J, Borowski E (2001) MFAME, N-methyl-N-D-fructosyl amphotericin B methyl ester, a new amphotericin B derivative of low toxicity: relationship between self-association and effects on red blood cells. Biochim Biophys Acta 1528:15鈥?4 CrossRef
    40. Paquet V, Carreira EM (2006) Significant improvement of antifungal activity of polyene macrolides by bisalkylation of the mycosamine. Org Lett 8:1807鈥?809 CrossRef
    41. Lewis RE, Viale P (2012) Update on amphotericin B pharmacology and dosing for common systemic mycoses. Curr Fungal Infect Rep 6:349鈥?57 CrossRef
    42. Moharamzadeh K, Colley H, Murdoch C, Haernden V, Chai WL, Brook IM, Thornhill MH, MacNeil S (2012) Tissue-engineered oral mucosa. J Dent Res 91:642鈥?50 CrossRef
    43. Peck Y, Wang DA (2013) Three-dimensionally engineered biomimetic tissue models for in vitro drug evaluation: delivery, efficacy and toxicity. Expert Opin Drug Deliv 10:369鈥?83 CrossRef
    44. Borowski E (2000) Novel approaches in the rational design of antifungal agents of low toxicity. Farmaco 55:206鈥?08 CrossRef
    45. Slisz M, Cybulska B, Mazerski J, Grzybowska J, Borowski E (2004) Studies of the effects of antifungal cationic derivatives of amphotericin B on human erythrocytes. J Antibiot (Tokyo) 57:669鈥?78 CrossRef
    46. Martin R, W盲chtler B, Schaller M, Wilson D, Hube B (2011) Host-pathogen interactions and virulence-associated genes during / Candida albicans oral infections. Int J Med Microbiol 301:417鈥?22 CrossRef
    47. Legrand P, Romero EA, Cohen BE, Bolard J (1992) Effects of aggregation and solvent on the toxicity of amphotericin B to human erythrocytes. Antimicrob Agents Chemother 36:2518鈥?522 CrossRef
    48. Davey HM (2011) Life, death, and in-between: meanings and methods in microbiology. Appl Environ Microbiol 77:5571鈥?576 CrossRef
    49. Seneviratne SJ, Jin L, Samaranayake LP (2008) Biofilm lifestyle of / Candida: a mini review. Oral Dis 14:582鈥?90 CrossRef
    50. Williams DW, Kuriyama T, Silva S, Malic S, Lewis MAO (2011) / Candida biofilms and oral candidosis: treatment and prevention. Periodontol 55:250鈥?65 CrossRef
    51. Bartie KL, Williams DW, Wilson MJ, Potts AJC, Lewis MAO (2004) Differential invasion of / Candida albicans isolates in an in vitro model of oral candidosis. Oral Microbiol Immunol 19:293鈥?96 CrossRef
    52. Malic S, Hill KE, Ralphs JR, Hayes A, Thomas DW, Potts AJ, Williams DW (2007) Characterization of / Candida albicans infection of an in vitro oral epithelial model using confocal laser scanning microscopy. Oral Microbiol Immunol 22:188鈥?94 CrossRef
    53. Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA (2001) Biofilm formation by the fungal pathogen / Candida albicans: development, architecture, and drug resistance. J Bacteriol 183:5385鈥?394 CrossRef
    54. Zakikhany K, Naglik JR, Shmidt-Westhausen A, Holland G, Schaller M, Hube B (2007) / In vivo transcript profiling of / Candida albicans identifies a gene essential for interepithelial dissemination. Cell Microbiol 9:2938鈥?954 CrossRef
    55. Jacobsen ID, Wilson D, W盲chtler B, Brunke S, Naglik JR, Hube B (2012) / Candida albicans dimorphism as a therapeutic target. Expert Rev Anti Infect Ther 10:85鈥?3 CrossRef
    56. Silva S, Henriques M, Hayes A, Oliveira R, Azeredo J, Williams DW (2011) / Candida glabrata and / Candida albicans co-infection of an in vitro oral epithelium. J Oral Pathol Med 40:421鈥?27 CrossRef
    57. Baillie GS, Douglas LJ (1998) Effect of growth rate on resistance of / Candida albicans biofilms to antifungal agents. Antimicrob Agents Chemother 42:1900鈥?905
    58. Chandra J, Mukherjee PK, Leidich SD, Faddoul FF, Hoyer LL, Douglas LJ, Ghannoum MA (2001) Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J Dent Res 80:903鈥?08 CrossRef
    59. Samaranayake YH, Ye J, Yau JYY, Cheung BPK, Samaranayake LP (2005) In vitro method to study antifungal perfusion in / Candida biofilms. J Clin Microbiol 43:818鈥?25 CrossRef
    60. Kuriyama T, Williams DW, Bagg J, Coulter WA, Ready D, Lewis MAO (2005) / In vitro susceptibility of oral / Candida to seven antifungal agents. Oral Microbiol Immunol 20:349鈥?53 CrossRef
  • 作者单位:Joanna Boros-Majewska (1) (2)
    Natalia Salewska (2) (3)
    Edward Borowski (1) (2)
    S艂awomir Milewski (1)
    Sladjana Malic (4)
    Xiao-Qing Wei (5)
    Anthony J. Hayes (6)
    Melanie J. Wilson (5)
    David W. Williams (5)

    1. Department of Pharmaceutical Technology and Biochemistry, Gda艅sk University of Technology (GUT), 11/12 Narutowicza Street, 80-233, Gda艅sk, Poland
    2. BLIRT S.A., 3/1.38 Trzy Lipy Street, 80-172, Gda艅sk, Poland
    3. Department of Organic Chemistry, Gda艅sk University of Technology, 11/12 Narutowicza Street, 80-233, Gda艅sk, Poland
    4. School of Healthcare Sciences, Manchester Metropolitan University, Manchester, M1 5GD, UK
    5. Tissue Engineering and Reparative Dentistry, School of Dentistry, Cardiff University, Heath Park, Cardiff, CF14 4XY, UK
    6. Bioimaging Unit, School of Biosciences, Cardiff University, Park Place, Cardiff, CF10 3US, UK
  • ISSN:1432-1831
文摘
Opportunistic oral infections caused by Candida albicans are frequent problems in immunocompromised patients. Management of such infections is limited due to the low number of antifungal drugs available, their relatively high toxicity and the emergence of antifungal resistance. Given these issues, our investigations have focused on novel derivatives of the antifungal antibiotic Nystatin A1, generated by modifications at the amino group of this molecule. The aims of this study were to evaluate the antifungal effectiveness and host cell toxicity of these new compounds using an in vitro model of oral candidosis based on a reconstituted human oral epithelium (RHOE). Initial studies employing broth microdilution, revealed that against planktonic C. albicans, Nystatin A1 had lower minimal inhibitory concentration than novel derivatives. However, Nystatin A1 was also markedly more toxic against human keratinocyte cells. Interestingly, using live/dead staining to assess C. albicans and tissue cell viability after RHOE infection, Nystatin A1 derivatives were more active against Candida with lower toxicity to epithelial cells than the parent drug. Lactate dehydrogenase activity released by the RHOE indicated a fourfold reduction in tissue damage when certain Nystatin derivatives were used compared with Nystatin A1. Furthermore, compared with Nystatin A1, colonisation of the oral epithelium by C. albicans was notably reduced by the new polyenes. In the absence of antifungal agents, confocal laser scanning microscopy showed that C. albicans extensively invaded the RHOE. However, the presence of the novel derivatives greatly reduced or totally prevented this fungal invasion.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700