Electrodeposition of three-dimensional Ni(OH)2 nanoflakes on partially crystallized activated carbon for high-performance supercapacitors
详细信息    查看全文
  • 作者:Shilei Gong ; Qing Cao ; Li′e Jin ; Cungui Zhong…
  • 关键词:Electrodeposition ; Ni(OH)2 ; Activated carbon ; Crystallization ; Supercapacitor
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:20
  • 期:3
  • 页码:619-628
  • 全文大小:1,503 KB
  • 参考文献:1.Lu Q, Chen JG, Xiao JQ (2013) Nanostructured electrodes for high-performance pseudocapacitors. Angew Chem 52:1882–1889CrossRef
    2.Wang JG, Yang Y, Huang ZH, Kang F (2013) A high-performance asymmetric supercapacitor based on carbon and carbon-MnO2 nanofiber electrodes. Carbon 61:190–199CrossRef
    3.Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828CrossRef
    4.Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531CrossRef
    5.Su DS, Schlögl R (2010) Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. ChemSusChem 3:136–168CrossRef
    6.Xie LJ, Wu JF, Chen CM, Zhang CM, Wan L, Wang JL, et al. (2013) A novel asymmetric supercapacitor with an activated carbon cathode and a reduced graphene oxide-cobalt oxide nanocomposite anode. J Power Sources 242:148–156CrossRef
    7.Hu CC, Chen WC (2004) Effects of substrates on the capacitive performance of RuOx·nH2O and activated carbon-RuOx electrodes for supercapacitors. Electrochim Acta 49:3469–3477CrossRef
    8.Jiang H, Zhao T, Ma J, Yan C, Li C (2011) Ultrafine manganese dioxide nanowire network for high-performance supercapacitors. Chem Commun 47:1264–1266CrossRef
    9.Chen F, Zhou W, Yao H, Fan P, Yang J, Fei Z, et al. (2013) Self-assembly of NiO nanoparticles in lignin-derived mesoporous carbons for supercapacitor applications. Green Chem 15:3057–3063CrossRef
    10.Ji J, Zhang LL, Ji H, Li Y, Zhao X, Bai X, et al. (2013) Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7:6237–6243CrossRef
    11.Xiong W, Pan X, Li Y, Chen X, Zhu Y, Yang M, et al. (2015) Hierarchical Co3O4@PPy CORE/shell nanowire arrays on nickel foam for electrochemical energy storage. Mater Lett 157:23–26CrossRef
    12.Chen S, Duan J, Tang Y, Zhang QS (2013) Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials. Chem Eur J 19:7118–7124CrossRef
    13.Nandy S, Maiti U, Ghosh C, Chattopadhyay K (2009) Enhanced p-type conductivity and band gap narrowing in heavily Al doped NiO thin films deposited by RF magnetron sputtering. J Phys Condens Matter 21:115804CrossRef
    14.Kim JH, Kim CH, Yoon H, Youm JS, Jung YC, Bunker CE, et al. (2015) Rationally engineered surface properties of carbon nanofibers for the enhanced supercapacitive performance of binary metal oxide nanosheets. J Mater Chem A 3:19867–19872CrossRef
    15.Qian T, Xu N, Zhou J, Yang T, Liu X, Shen X, et al. (2015) Interconnected three-dimensional V2O5/polypyrrole network nanostructures for high performance solid-state supercapacitors. J Mater Chem A 3:488–493CrossRef
    16.Yan J, Fan Z, Sun W, et al. (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22:2632–2641CrossRef
    17.Park JH, Park OO, Shin KH, Jin CS, Kim JH (2002) An electrochemical capacitor based on a Ni(OH)2/activated carbon composite electrode. Electrochem Solid-State Lett 5:H7–H10CrossRef
    18.Tang Z, Tang CH, Gong H (2012) A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv Funct Mater 22:1272–1278CrossRef
    19.Wang L, Li X, Guo T, Yan X, Tay BK (2014) Three-dimensional Ni(OH)2 nanoflakes/graphene/nickel foam electrode with high rate capability for supercapacitor applications. Int J Hydrog Energy 39:7876–7884CrossRef
    20.Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72–88CrossRef
    21.Li Y, Li Z, Shen PK (2013) Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv Mater 25:2474–2480CrossRef
    22.Ren TZ, Liu L, Zhang Y, Yuan ZY (2013) Nitric acid oxidation of ordered mesoporous carbons for use in electrochemical supercapacitors. J Solid State Electrochem 17:2223–2233CrossRef
    23.Wang L, Guo Y, Zou B, Rong C, Ma X, Qu Y, et al. (2013) High surface area porous carbons prepared from hydrochars by phosphoric acid activation. Bioresour Technol 102:1947–1950CrossRef
    24.Jiang L, Yan J, Hao L, Xue R, Sun G, Yi B (2013) High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors. Carbon 56:146–154CrossRef
    25.Hao P, Zhao Z, Leng Y, Tian J, Sang Y, Boughton RI, et al. (2015) Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy 15:9–23CrossRef
    26.El–Hendawy ANA (2003) Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon 41:713–722CrossRef
    27.Jiang H, Ma J, Li C (2012) Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv Mater 24:4197–4202CrossRef
    28.Xia X, Tu J, Mai Y, Chen R, Wang X, Gu C, et al. (2011) Graphene sheet/porous NiO hybrid film for supercapacitor applications. Chem Eur J 17:10898–10905CrossRef
    29.Ortiz M, Castro E, Real S (2014) Effect of cobalt electroless deposition on nickel hydroxide electrodes. Int J Hydrog Energy 39:6006–6012CrossRef
    30.Hu CC, Chen JC, Chang KH (2013) Cathodic deposition of Ni(OH)2 and Co(OH)2 for asymmetric supercapacitors: importance of the electrochemical reversibility of redox couples. J Power Sources 221:128–133CrossRef
    31.Shin HC, Dong J, Liu M (2003) Nanoporous structures prepared by an electrochemical deposition process. Adv Mater 15:1610–1614CrossRef
    32.Wang H, Liang Y, Mirfakhrai T, et al. (2011) Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res 4:729–736CrossRef
    33.Liu H, Zhang J, Xu D, Zhang B, Shi L, Huang L, et al. (2014) In situ formation of Ni(OH)2 nanoparticle on nitrogen-doped reduced graphene oxide nanosheet for high-performance supercapacitor electrode material. Appl Surf Sci 317:370–377CrossRef
  • 作者单位:Shilei Gong (1)
    Qing Cao (1)
    Li′e Jin (1)
    Cungui Zhong (1)
    Xiaohua Zhang (1)

    1. College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Analytical Chemistry
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
    Condensed Matter
    Electronic and Computer Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-0768
文摘
Three-dimensional Ni(OH)2 nanoflakes were prepared via a facile and cost-effective electrodeposition method using commercial activated carbon (AC) as substrate. Nitric acid treatment (NT) and partial crystallization (PC) by metal nickel catalysis were applied for AC. The effects of the oxygen-containing functional groups and the degree of crystallization on the electrochemical performance of the electrode were investigated. The resulting Ni(OH)2/PC–NT–AC/nickel foam electrode exhibits distinct performance with a specific capacitance of 2971 F/g (scaled to the mass of active Ni(OH)2) at a current density of 6 A/g. A high capacitance of 1919 F/g was still achieved even at 40 A/g, which is much higher than Ni(OH)2/AC/nickel foam electrode and Ni(OH)2/NT–AC/nickel foam electrode. The excellent performance of Ni(OH)2/PC–NT–AC/nickel foam electrode can be attributed to the presence of large surface area and highly conductive PC–NT–AC network on nickel foam. This study presents an effective method to improve the dispersion and rate capability of Ni(OH)2 nanostructure electrodes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700