Morphology, chemical composition and nanostructure of single carbon-rich particles studied by transmission electron microscopy: source apportionment in workroom air of aluminium smelters
详细信息    查看全文
  • 作者:Stephan Weinbruch ; Nathalie Benker…
  • 关键词:Elemental carbon ; Source apportionment ; Soot ; Carbon nanotubes ; Workplace aerosol ; Electron microscopy
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:408
  • 期:4
  • 页码:1151-1158
  • 全文大小:1,133 KB
  • 参考文献:1.Yttri KE, Myhre CL, Tørseth K (2009) The carbonaceous aerosol—a remaining challenge. WMO Bull 58:54–60
    2.Baltensperger U, Barrie L, Fröhlich C, Gras J, Jäger H, Jennings SG, Li SM, Ogren JA, Wiedensohler A, Wehrli C, Wilson J (2003) WMO/GAW aerosol measurement procedures, guidelines and recommendations, WMO/GAW No.153, 67 pp
    3.Petzold A, Ogren JA, Fiebig M, Laj P, Li SM, Baltensperger U, Holzer-Popp T, Kinne S, Pappalardo G, Sugimoto N, Wehrli C, Wiedensohler A, Zhang XY (2013) Recommendations for reporting “black carbon” measurements. Atmos Chem Phys 13:8365–8379CrossRef
    4.Niessner R (2014) The many faces of soot: characterization of soot nanoparticles produced by engines. Angew Chem Int Ed 53:12366–12379
    5.Buseck PR, Adachi K, Gelencsér A, Tompa É, Pósfai M (2012) Are black carbon and soot the same? Atmos Chem Phys Discuss 12:24821–24846CrossRef
    6.Chow JC, Yu JZ, Watson JG, Ho SSH, Bohannan TL, Hays MD, Fung KK (2007) The application of thermal methods for determining chemical composition of carbonaceous aerosols: a review. J Environ Sci Health A 42:1521–1541CrossRef
    7.McClellan RO (1987) Health effects of exposure to diesel exhaust particles. Annu Rev Pharmacol Toxicol 27:279–300CrossRef
    8.Lipsett M, Campleman S (1999) Occupational exposure to diesel exhaust and lung cancer: a meta-analysis. Am J Public Health 89:1009–1017CrossRef
    9.Sydbom A, Blomberg A, Parnia S, Stenfors N, Sandström T, Dahlén SE (2001) Health effects of diesel exhaust emissions. Eur Respir J 17:733–746CrossRef
    10.Silverman DT, Samanic CM, Lubin JH, Blair AE, Stewart PA, Vermeulen R, Coble JB, Rothman N, Schleiff PL, Travis WD, Ziegler RG, Wacholder S, Attfield MD (2012) The diesel exhaust in miners study: a nested case–control study of lung cancer and diesel exhaust. J Natl Cancer Inst 104:1–14
    11.Attfield MD, Schleiff PL, Lubin JH, Blair A, Stewart PA, Vermeulen R, Coble JB, Silverman DT (2012) The diesel exhaust in miners study: a cohort mortality study with emphasis on lung cancer. J Natl Cancer Inst 104:869–883CrossRef
    12.Janssen NAH, Gerlofs-Nijland ME, Lanki T, Salonen RO, Cassee F, Hoek G, Fischer P, Brunekreef B, Krzyzanowski M (2012) Health effects of black carbon. World Health Organization, Regional Office for Europe, Copenhagen
    13.Benbrahim-Tallaa L, Baan RA, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Guha N, Loomis D, Straif K (2012) Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarenes. Lancet Oncol 13:663–664CrossRef
    14.Birch ME, Cary RA (1996) Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci Technol 25:221–241CrossRef
    15.Schauer JJ (2003) Evaluation of elemental carbon as a marker for diesel particulate matter. J Expo Anal Environ Epidemiol 13:443–453CrossRef
    16.Thomassen Y, Berlinger B, Ellingsen DG, Daae HL, Friisk G, Romanova N, Skaugset NP, Weinbruch S (2015) Kartlegging av exponering for dieseleksospartikler i norsk arbeidsliv ved bruk av elementært karbon som markør. STAMI-rapport 2/16, Statens Arbeidsmiljøinstitutt, Oslo, ISSN 1502-0932, (in Norwegian)
    17.Pronk A, Coble J, Stewart PA (2009) Occupational exposure to diesel engine exhaust: a literature review. J Expo Sci Environ Epidemiol 19:443–457CrossRef
    18.Burkin AR (1987) Production of aluminium and alumina. Wiley, Chichester
    19.Thonstad J, Fellner P, Haaberg GM, Híves J, Kvande H, Sterten Å (2001) Aluminium electrolysis: fundamentals of the Hall-Héroult process, 3rd edn. Aluminium-Verlag, Düsseldorf
    20.Höflich BLW, Weinbruch S, Theissmann R, Gorzawski H, Ebert M, Ortner HM, Skogstad A, Ellingsen DG, Drabløs PA, Thomassen Y (2005) Characterization of individual aerosol particles in workroom air of aluminium smelter potrooms. J Environ Monit 7:419–424CrossRef
    21.Thomassen Y, Koch W, Dunkhorst W, Ellingsen DG, Skaugset NP, Jordbekken L, Drabløs PA, Weinbruch S (2006) Ultrafine particles at workplaces of a primary aluminium smelter. J Environ Monit 8:127–133CrossRef
    22.Miller A, Frey G, King G, Sunderman C (2010) A handheld electrostatic precipitator for sampling airborne particles and nanoparticles. Aerosol Sci Technol 44:417–427CrossRef
    23.R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, http://www.R-project.org/
    24.Wentzel M, Gorzawski H, Naumann K-H, Saathoff H, Weinbruch S (2003) Transmission electron microscopical and aerosol dynamical characterization of soot aerosols. J Aerosol Sci 34:1347–1370CrossRef
    25.Chen Y, Shah N, Huggins FE, Huffman GP (2005) Transmission electron microscopy investigation of ultrafine coal fly ash particles. Environ Sci Technol 39:1144–1151CrossRef
    26.Vernooij MGC, Mohr M, Tzvetkov G, Zelenay V, Huthwelker T, Kaegi R, Gehrig R, Grobéty B (2009) On source identification and alteration of single diesel and wood smoke soot particles in the atmosphere; an X-ray microspectroscopy study. Environ Sci Technol 43:5339–5344CrossRef
    27.Tumolva L, Park J-Y, Kim J-S, Miller AL, Chow JC, Watson JG, Park K (2010) Morphological and elemental classification of freshly emitted soot particles and atmospheric ultrafine particles using TEM/EDS. Aerosol Sci Technol 44:202–215CrossRef
    28.Kocbach A, Johansen BV, Schwarze PE, Namork E (2005) Analytical electron microscopy of combustion particles: a comparison of vehicle exhaust and residential wood smoke. Sci Total Environ 346:231–243CrossRef
    29.Kocbach A, Li Y, Yttri KE, Cassee FR, Schwarze PE, Namork E (2006) Physicochemical characterisation of combustion particles from vehicle exhaust and residential wood smoke. Part Fibre Toxicol 3:1CrossRef
    30.Utsunomiya S, Jensen KA, Keeler GJ, Ewing RC (2002) Uraninite and fullerene in atmospheric particulates. Environ Sci Technol 36:4943–4947CrossRef
    31.Mazaheri M, Bostrom TE, Johnson GR, Morawska L (2013) Composition and morphology of particle emissions from in-use aircraft during takeoff and landing. Environ Sci Technol 47:5235–5242CrossRef
    32.Liati A, Brem BT, Durdina L, Vögtli M, Dasilva YAR, Eggenschwiler PD, Wang J (2014) Electron microscopic study of soot particulate matter emissions from aircraft turbine engines. Environ Sci Technol 48:10975–10983CrossRef
    33.Pósfai M, Simonics R, Li J, Hobbs PV, Buseck PR (2003) Individual aerosol particles from biomass burning in southern Africa: 1. Compositions and size distributions of carbonaceous particles. J Geophys Res 108:8483. doi:10.​1029/​2002JD002291 CrossRef
    34.Kis VK, Pósfai M, Lábár JL (2006) Nanostructure of atmospheric soot particles. Atmos Environ 40:5533–5542CrossRef
    35.Park K, Kittelson DB, McMurry PH (2004) Structural properties of diesel exhaust particles measured by transmission electron microscopy (TEM): relationships to particle mass and mobility. Aerosol Sci Technol 38:881–889CrossRef
    36.Smekens A, Moreton Godoi RH, Berghmans P, van Grieken R (2005) Characterisation of soot emitted by domestic heating, aircraft and cars using diesel or biodiesel. J Atmos Chem 52:45–62CrossRef
    37.Lapuerta M, Martos FJ, Herreros JM (2007) Effect of engine operating conditions on the size of primary particles composing diesel soot agglomerates. J Aerosol Sci 38:455–466CrossRef
    38.Vander Wal RL, Bryg VM, Hays MD (2010) Fingerprinting soot (towards source identification): physical structure and chemical composition. J Aerosol Sci 41:108–117CrossRef
    39.Harris PJF (2001) Carbonaceous contaminants on support films for transmission electron microscopy. Carbon 39:909–913CrossRef
    40.Klie RF, Ciuparu D, Pfefferle L, Zhu Y (2004) Multi-walled carbon nanotubes on amorphous carbon films. Carbon 42:1953–1957CrossRef
    41.Murr LE, Bang JJ, Esquivel EV, Guerrero PA, Lopez DA (2004) Carbon nanotubes, nanocrystal forms, and complex nanoparticle aggregates in common fuel-gas combustion sources and the ambient air. J Nanoparticle Res 6:241–251CrossRef
    42.Murr LE, Bang JJ, Lopez DA, Guerrero PA, Esquivel EV, Choudhuri AR, Subramanya M, Morandi M, Holian A (2004) Carbon nanotubes and nanocrystals in methane combustion and the environmental implications. J Mater Sci 39:2199–2204CrossRef
    43.Murr LE, Soto KF (2005) A TEM study of soot, carbon nanotubes, and related fullerene nanopolyhedra in common fuel-gas combustion sources. Mater Charact 55:50–65CrossRef
    44.Chianelli PR, Yácaman MJ, Arenas J, Aldape F (1998) Atmospheric nanoparticles in photocatalytic and thermal production of atmospheric pollutants. J Hazard Subst Res 1:1–17
    45.Shi Y, Murr LE, Soto KF, Lee WY, Guerrero PA, Ramirez DA (2007) Characterization and comparison of speciated atmospheric carbonaceous particulates and their polycyclic aromatic hydrocarbon contents in the context of the Paso del Norte airshed along the U.S.-Mexico border. Polycyclic Aromat Compd 27:361–400CrossRef
    46.Evelyn A, Mannick S, Sermon PA (2003) Unusual carbon-based nanofibers and chains among diesel-emitted particles. Nano Lett 3:63–64CrossRef
    47.Jung HS, Miller A, Park K, Kittelson DB (2013) Carbon nanotubes among diesel exhaust particles: real samples or contaminants? J Air Waste Manag Assoc 63:1199–1204CrossRef
    48.Lagally CD, Reynolds CCO, Grieshop AP, Kandlikar M, Rogak SN (2012) Carbon nanotube and fullerene emissions from spark-ignited engines. Aerosol Sci Technol 46:156–164CrossRef
    49.Murr LE, Guerrero PA (2006) Carbon nanotubes in wood soot. Atmos Sci Lett 7:93–95CrossRef
    50.Gjønnes K, Skogstad A, Hetland S, Ellingsen DG, Thomassen Y, Weinbruch S (2011) Characterization of workplace aerosols in the manganese alloy production industry by electron microscopy. Anal Bioanal Chem 399:1011–1020CrossRef
    51.Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
    52.Zhuxian Q (1992) A new contribution to the theory of anode effect in aluminium electrolysis. Chin J Met Sci Technol 8:15–19
    53.Pósfai M, Gelencsér A, Simonics R, Arató K, Li J, Hobbs PV, Buseck PR (2004) Atmospheric tar balls: particles from biomass and biofuel burning. J Geophys Res 109, doi: 10.​1029/​2003JD004169
    54.Mahajan A, Kingon A, Kukovecz Á, Konya Z, Vilarinho PM (2013) Studies on the thermal decomposition of multiwall carbon nanotubes under different atmospheres. Mater Lett 90:165–168CrossRef
    55.Garza KM, Soto KF, Murr LE (2008) Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials. Int J Nanomed 3:83–94CrossRef
    56.Mattenklott M, Bagschik U, Chromy W, Dahmann D, Kieser D, Rietschel P, Schwalb J, Sinner KE, Stückrath M, Van Gelder R, Wilms V (2002) Dieselmotoremissionen am Arbeitsplatz. Gefahrstoffe – Reinhalt Luft 62:13–23 (in German)
  • 作者单位:Stephan Weinbruch (1) (2)
    Nathalie Benker (1)
    Konrad Kandler (1)
    Martin Ebert (1)
    Dag G. Ellingsen (2)
    Balázs Berlinger (2)
    Yngvar Thomassen (2)

    1. Institute of Applied Geosciences, Technical University Darmstadt, Schnittspahnstr. 9, 64287, Darmstadt, Germany
    2. National Institute of Occupational Health, Gydas vei 8, PO Box 8149 Dep, 0033, Oslo, Norway
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Food Science
    Inorganic Chemistry
    Physical Chemistry
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1618-2650
文摘
Sources of C-rich particles at work places in two aluminium smelters in Norway were studied by transmission electron microscopy and energy-dispersive X-ray microanalysis. Based on morphology, nanostructure and chemistry, three different types of C-rich particles are distinguished: (a) chain-like agglomerates (70–100 % by number, relative to the sum of C-rich particles) consisting of primary particles with typical onion-shell structure of graphene layers, (b) multi-walled carbon nanotube particles (≈3 %) and (c) spheres or agglomerates of amorphous C-rich particles (0–30 %). Chain-like agglomerates are interpreted as diesel soot in accordance with literature data on primary particle diameter, chemical composition and nanostructure of primary particles. The source of the observed multi-walled carbon nanotubes is not known. The amorphous C-rich particles most likely consist of organic carbon species which cannot be characterized further by X-ray microanalysis. Unaltered graphitic electrode material was not found among the C-rich particles. The high fraction of diesel soot particles indicates that elemental carbon is generally suited as proxy for diesel soot in aluminium smelters. However, due to the presence of carbon nanotubes and amorphous C-rich particles, detailed characterization of sources of carbon-rich particles by electron microscopy is recommended for accurate assessment of adverse health effects. Keywords Elemental carbon Source apportionment Soot Carbon nanotubes Workplace aerosol Electron microscopy

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700