Effect of pressure on soot formation in the pyrolysis of n-hexane and the oxidation of fuel-rich mixtures of n-heptane behind reflected shock waves
详细信息    查看全文
文摘
The results of detailed kinetic simulations of the formation of soot particles in the pyrolysis of n-hexane–argon mixtures and in the oxidation of fuel-rich (φ = 5) n-heptane–oxygen–argon mixtures behind reflected shock waves at pressures of 20–100 bar and a constant concentration of carbon atoms or a constant fraction of argon in the initial mixture within the framework of a modified reaction mechanism are reported. The choice of n-hexane and n-heptane for examining the effect of pressure on the process of soot formation was motivated by the availability for these hydrocarbons of experimental measurements in reflected shock waves at high pressures (up to ~100 bar). The temperature dependences of the yield of soot particles formed in the pyrolysis of n-hexane are found to be very weakly dependent on pressure and slightly shifting to lower temperatures with increasing pressure. In general, pressure produces a very weak effect on the soot formation in the pyrolysis of n-hexane. The effect of pressure and concentration of carbon atoms in the initial mixture on the process of soot formation during the oxidation of fuel-rich n-heptane mixtures behind reflected shock waves is studied. The results of our kinetic simulations show that, for both the pyrolysis of n-hexane and the oxidation of fuel-rich n-heptane–oxygen mixtures, the influence of pressure on the process of soot formation is negligible. By contrast, the concentration of carbon atoms in the initial reaction mixture produces a much more pronounced effect.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700