γδ Τ cells enhance B cells for antibody production in Hashimoto's thyroiditis, and retinoic acid induces apoptosis of the γδ Τ cell
详细信息    查看全文
  • 作者:Hongli Liu ; Tingting Zheng ; Yufei Mao ; Chengcheng Xu ; Fei Wu ; Ling Bu…
  • 关键词:Hashimoto’s thyroiditis ; γδ T cells ; All ; trans retinoic acid ; Autoantibodies
  • 刊名:Endocrine
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:51
  • 期:1
  • 页码:113-122
  • 全文大小:1,516 KB
  • 参考文献:1.E.N. Pearce, A.P. Farwell, L.E. Braverman, Thyroiditis. N. Engl. J. Med. 348(26), 2646–2655 (2003)PubMed CrossRef
    2.H.E. Takami, R. Miyabe, K. Kameyama, Hashimoto’s thyroiditis. World J. Surg. 32(5), 688–692 (2008)PubMed CrossRef
    3.A.P. Weetman, Autoimmune thyroid disease. Autoimmunity 37(4), 337–340 (2004)PubMed CrossRef
    4.C. Zhu, J. Ma, Y. Liu, J. Tong, J. Tian, J. Chen, X. Tang, H. Xu, L. Lu, S. Wang, Increased frequency of follicular helper T cells in patients with autoimmune thyroid disease. J. Clin. Endocrinol. Metab. 97(3), 943–950 (2012)PubMed CrossRef
    5.P. Caturegli, A. De Remigis, K. Chuang, M. Dembele, A. Iwama, S. Iwama, Hashimoto’s thyroiditis: celebrating the centennial through the lens of the Johns Hopkins hospital surgical pathology records. Thyroid 23(2), 142–150 (2013)PubMed PubMedCentral CrossRef
    6.J.C. Ribot, A. Debarros, B. Silva-Santos, Searching for “signal 2”: costimulation requirements of gammadelta T cells. Cell. Mol. Life Sci. 68(14), 2345–2355 (2011)PubMed CrossRef
    7.A.C. Hayday, [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu. Rev. Immunol. 18, 975–1026 (2000)PubMed CrossRef
    8.W. Haas, P. Pereira, S. Tonegawa, Gamma/delta cells. Annu. Rev. Immunol. 11, 637–685 (1993)PubMed CrossRef
    9.C. Mao, X. Mou, Y. Zhou, G. Yuan, C. Xu, H. Liu, T. Zheng, J. Tong, S. Wang, D. Chen, Tumor-activated TCR gammadelta (+) T cells from gastric cancer patients induce the antitumor immune response of TCRalphabeta (+) T cells via their antigen-presenting cell-like effects. J. Immunol. Res. 2014, 593562 (2014)PubMed PubMedCentral CrossRef
    10.D. Su, M. Shen, X. Li, L. Sun, Roles of gammadelta T cells in the pathogenesis of autoimmune diseases. Clin. Dev. Immunol. 2013, 985753 (2013)PubMed PubMedCentral CrossRef
    11.S. Rajagopalan, T. Zordan, G.C. Tsokos, S.K. Datta, Pathogenic anti-DNA autoantibody-inducing T helper cell lines from patients with active lupus nephritis: isolation of CD4-8-T helper cell lines that express the gamma delta T-cell antigen receptor. Proc. Natl. Acad. Sci. USA 87(18), 7020–7024 (1990)PubMed PubMedCentral CrossRef
    12.A.A. Horner, H. Jabara, N. Ramesh, R.S. Geha, gamma/delta T lymphocytes express CD40 ligand and induce isotype switching in B lymphocytes. J. Exp. Med. 181(3), 1239–1244 (1995)PubMed CrossRef
    13.N. Caccamo, L. Battistini, M. Bonneville, F. Poccia, J.J. Fournie, S. Meraviglia, G. Borsellino, R.A. Kroczek, C. La Mendola, E. Scotet et al., CXCR5 identifies a subset of Vgamma9Vdelta2 T cells which secrete IL-4 and IL-10 and help B cells for antibody production. J. Immunol. 177(8), 5290–5295 (2006)PubMed CrossRef
    14.M. Mark, N.B. Ghyselinck, P. Chambon, Retinoic acid signalling in the development of branchial arches. Curr. Opin. Genet. Dev. 14(5), 591–598 (2004)PubMed CrossRef
    15.D. Liang, A. Zuo, H. Shao, W.K. Born, R.L. O’Brien, H.J. Kaplan, D. Sun, Retinoic acid inhibits CD25+ dendritic cell expansion and gammadelta T-cell activation in experimental autoimmune uveitis. Invest. Ophthalmol. Vis. Sci. 54(5), 3493–3503 (2013)PubMed PubMedCentral CrossRef
    16.L.A. Mielke, S.A. Jones, M. Raverdeau, R. Higgs, A. Stefanska, J.R. Groom, A. Misiak, L.S. Dungan, C.E. Sutton, G. Streubel et al., Retinoic acid expression associates with enhanced IL-22 production by gammadelta T cells and innate lymphoid cells and attenuation of intestinal inflammation. J. Exp. Med. 210(6), 1117–1124 (2013)PubMed PubMedCentral CrossRef
    17.A. Yokota, H. Takeuchi, N. Maeda, Y. Ohoka, C. Kato, S.Y. Song, M. Iwata, GM-CSF and IL-4 synergistically trigger dendritic cells to acquire retinoic acid-producing capacity. Int. Immunol. 21(4), 361–377 (2009)PubMed PubMedCentral CrossRef
    18.B. Hoechst, J. Gamrekelashvili, M.P. Manns, T.F. Greten, F. Korangy, Plasticity of human Th17 cells and iTregs is orchestrated by different subsets of myeloid cells. Blood 117(24), 6532–6541 (2011)PubMed CrossRef
    19.L. Saurer, K.C. McCullough, A. Summerfield, In vitro induction of mucosa-type dendritic cells by all-trans retinoic acid. J. Immunol. 179(6), 3504–3514 (2007)PubMed CrossRef
    20. http://​www.​japanthyroid.​jp/​en/​guidelines.​html#chr . Diagnostic guidelines made by The Japan Thyroid Association
    21.M.H. Rho, D.W. Kim, H.P. Hong, Y.M. Park, M.J. Kwon, S.J. Jung, Y.W. Kim, T. Kang, Diagnostic value of antithyroid peroxidase antibody for incidental autoimmune thyroiditis based on histopathologic results. Endocrine 42, 647–652 (2012)PubMed CrossRef
    22.F. Cicone, A. Papa, C. Lauri, A. Tofani, C. Virili, M. Centanni, F. Scopinaro, B. Annibale, Thyro-gastric autoimmunity in patients with differentiated thyroid cancer: a prospective study. Endocrine 49(1), 163–169 (2015)PubMed CrossRef
    23.F. Paolieri, C. Pronzato, M. Battifora, N. Fiorino, G.W. Canonica, M. Bagnasco, Infiltrating gamma/delta T-cell receptor-positive lymphocytes in Hashimoto’s thyroiditis, Graves’ disease and papillary thyroid cancer. J. Endocrinol. Invest. 18(4), 295–298 (1995)PubMed CrossRef
    24.D. Liang, A. Zuo, H. Shao, W.K. Born, R.L. O’Brien, H.J. Kaplan, D. Sun, Retinoic acid inhibits CD25+ dendritic cell expansion and gammadelta T-cell activation in experimental autoimmune uveitis. Invest. Ophthalmol. Vis. Sci. 54(5), 3493–3503 (2013)PubMed PubMedCentral CrossRef
    25.N. Figueroa-Vega, M. Alfonso-Perez, I. Benedicto, F. Sanchez-Madrid, R. Gonzalez-Amaro, M. Marazuela, Increased circulating pro-inflammatory cytokines and Th17 lymphocytes in Hashimoto’s thyroiditis. J. Clin. Endocrinol. Metab. 95(2), 953–962 (2010)PubMed CrossRef
    26.M. Marazuela, M.A. Garcia-Lopez, N. Figueroa-Vega, H. de la Fuente, B. Alvarado-Sanchez, A. Monsivais-Urenda, F. Sanchez-Madrid, R. Gonzalez-Amaro, Regulatory T cells in human autoimmune thyroid disease. J. Clin. Endocrinol. Metab. 91(9), 3639–3646 (2006)PubMed CrossRef
    27.I.S. Grewal, R.A. Flavell, CD40 and CD154 in cell-mediated immunity. Annu. Rev. Immunol. 16, 111–135 (1998)PubMed CrossRef
    28.A. Hutloff, A.M. Dittrich, K.C. Beier, B. Eljaschewitsch, R. Kraft, I. Anagnostopoulos, R.A. Kroczek, ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397(6716), 263–266 (1999)PubMed CrossRef
    29.P. Chambon, A decade of molecular biology of retinoic acid receptors. FASEB J. 10(9), 940–954 (1996)PubMed
    30.X. Du, K. Tabeta, N. Mann, K. Crozat, S. Mudd, B. Beutler, An essential role for Rxr alpha in the development of Th2 responses. Eur. J. Immunol. 35(12), 3414–3423 (2005)PubMed CrossRef
    31.T.T. Schug, D.C. Berry, N.S. Shaw, S.N. Travis, N. Noy, Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell 129(4), 723–733 (2007)PubMed PubMedCentral CrossRef
    32.M.A. Kane, A.E. Folias, C. Wang, J.L. Napoli, Ethanol elevates physiological all-trans-retinoic acid levels in select loci through altering retinoid metabolism in multiple loci: a potential mechanism of ethanol toxicity. FASEB J. 24(3), 823–832 (2010)PubMed PubMedCentral CrossRef
    33.S.M. Smith, C.E. Hayes, Contrasting impairments in IgM and IgG responses of vitamin A-deficient mice. Proc. Natl. Acad. Sci. USA 84(16), 5878–5882 (1987)PubMed PubMedCentral CrossRef
    34.K. Morikawa, M. Nonaka, All-trans-retinoic acid accelerates the differentiation of human B lymphocytes maturing into plasma cells. Int. Immunopharmacol. 5(13–14), 1830–1838 (2005)PubMed CrossRef
    35.S.K. Kwok, M.K. Park, M.L. Cho, H.J. Oh, E.M. Park, D.G. Lee, J. Lee, H.Y. Kim, S.H. Park, Retinoic acid attenuates rheumatoid inflammation in mice. J. Immunol. 189(2), 1062–1071 (2012)PubMed CrossRef
  • 作者单位:Hongli Liu (1) (2) (3)
    Tingting Zheng (1) (2)
    Yufei Mao (4)
    Chengcheng Xu (1) (2)
    Fei Wu (1) (2)
    Ling Bu (1) (2)
    Xiao Mou (1) (2)
    Yuepeng Zhou (1) (2)
    Guoyue Yuan (1)
    Shengjun Wang (4)
    Tong Zhou (5)
    Deyu Chen (1) (2)
    Chaoming Mao (1) (2)

    1. Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
    2. Institute of Oncology, The Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, 212001, China
    3. Department of Laboratory Medicine, Nantong Tumor Hospital, Nantong, 226361, China
    4. Department of Laboratory Immunology, Jiangsu University School of Medicine, Zhenjiang, 212001, China
    5. Department of Pediatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
  • 刊物主题:Endocrinology; Diabetes; Internal Medicine; Science, general;
  • 出版者:Springer US
  • ISSN:1559-0100
文摘
TCR γδ+ Τ cells are important in the pathogenesis of inflammatory and autoimmune conditions. This study investigated the effect of γδ T cells on autoantibody production in patients with Hashimoto’s thyroiditis (HT). A total of 148 subjects were enrolled, including 99 patients with HT, 5 with simple goiters, and 44 healthy controls. Peripheral blood and thyroid mononuclear cells were subjected to flow cytometric analysis. Thyroid tissues underwent immunofluorescent staining and immunohistochemistry for γδ T cells and anti-thyroid antibody detection. Antibody production was measured by ELISA and automated chemiluminescent immunoassays. And activation and apoptosis of peripheral blood γδT cells and B cells were measured by flow cytometric analysis. The percentage of γδ T cells were greater in thyroid tissue from HT patients than that of goiter patients (n = 5, 5.33 ± 1.20 vs. 2.07 ± 0.44 %; P < 0.05), with the Vδ1+ γδ T cell subset especially dominant. Frequencies of CD69 (8.42 ± 1.08 vs. 1.60 ± 0.38 %, P < 0.001), HLA-DR (58.12 ± 6.36 vs. 37.82 ± 3.70 %, P < 0.05), CD40L (1.58 ± 0.35 vs. 0.15 ± 0.05 %, P < 0.01), and ICOS (2.78 ± 0.66 vs. 0.28 ± 0.13 %, P < 0.01) expressed on γδ T cells from HT patients (n = 19) were significantly increased compared with those of healthy controls (n = 15). More importantly, γδ T cells from HT patients enhanced B cells for antibody production, and all-trans retinoic acid (ATRA) treatment inhibited the effect by inducing apoptosis of γδ Τ cells. γδ Τ cells appear to play an important role in the pathogenesis of HT, and ATRA might be an effective regulator for HT patients.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700