Development of Processing Windows for HVOF Carbide-Based Coatings
详细信息    查看全文
  • 作者:Andrew Siao Ming Ang ; Hugo Howse ; Scott A. Wade…
  • 关键词:carbide ; cermet coatings ; diagnostic techniques ; hardness ; HVOF ; nickel ; based ; porosity ; thermal spray coatings
  • 刊名:Journal of Thermal Spray Technology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:25
  • 期:1-2
  • 页码:28-35
  • 全文大小:3,274 KB
  • 参考文献:1.K.O. Legg and J.P. Sauer, Use of Thermal Spray as an Aerospace Chrome Plating Alternative. Final Report, Grant No. N00173-98-D-2006, D.O. 0002, 2000.
    2.L.M. Berger, Application of Hardmetals as Thermal Spray Coatings, Int. J. Refract Metal Hard Mater., 2015, 49(1), p 350-364CrossRef
    3.J.A. Picas, M. Punset, M. Teresa Baile, E. Martín, and A. Forn, Tribological Evaluation of HVOF Thermal-Spray Coatings as a Hard Chrome Replacement, Surf. Interface Anal., 2011, 43(10), p 1346-1353CrossRef
    4.G. Bolelli, V. Cannillo, L. Lusvarghi, and S. Riccò, Mechanical and Tribological Properties of Electrolytic Hard Chrome and HVOF-Sprayed Coatings, Surf. Coat. Technol., 2006, 200(9), p 2995-3009CrossRef
    5.B.D. Sartwell, K.O. Legg, J. Zimmermann, M. Reynolds, J. Gribble, J. Magno, R. Mason, and A. Kaltenhauser, Validation of HVOF Thermal Spray Coatings as a Replacement for Hard Chrome Plating on Hydraulic/Pneumatic Actuators. US Department of Defense Environmental Security Technology Certification Program (ESTCP) Final Report, 2006
    6.V.A. de Souza and A. Neville, Corrosion and Erosion Damage Mechanisms During Erosion—Corrosion of WC-Co-Cr Cermet Coatings, Wear, 2003, 255(1-6), p 146-156CrossRef
    7.L. Fedrizzi, S. Rossi, R. Cristel, and P.L. Bonora, Corrosion and Wear Behaviour of HVOF Cermet Coatings Used to Replace Hard Chromium, Electrochim. Acta, 2004, 49(17-18), p 2803-2814CrossRef
    8.S. Zimmermann, Chromium Carbide Coatings Produced with Various HVOF Spray Systems, Proceedings of the 9th National Thermal Spray Conference, C.C. Berndt, Ed., October 7-11, 1996 (Cincinnati, Ohio), ASM International, 1996, p 147-152
    9.D. Zhang, S.J. Harris, and D.G. McCartney, Microstructure Formation and Corrosion Behaviour in HVOF-Sprayed Inconel 625 Coatings, Mater. Sci. Eng., A, 2003, 344(1-2), p 45-56CrossRef
    10.G. Bolelli, L.M. Berger, T. Börner, H. Koivuluoto, L. Lusvarghi, C. Lyphout, N. Markocsan, V. Matikainen, P. Nylén, P. Sassatelli, R. Trache, and P. Vuoristo, Tribology of HVOF- and HVAF-Sprayed WC-10Co4Cr Hardmetal Coatings: A Comparative Assessment, Surf. Coat. Technol., 2015, 265, p 125-144CrossRef
    11.C. Moreau, P. Gougeon, M. Lamontagne, V. Lacasse, G. Vaudreuil, and P. Cielo, On-line Control of the Plasma Spray Process by Monitoring the Temperature, Velocity and Trajectory of In-flight Particles, National Thermal Spray Conference—Thermal spray industrial applications, C.C. Berndt and S. Sampath, Ed., (Boston, Massachusetts, USA), ASM International, 1994, p 431-437
    12.J.G. Legoux, B. Arsenault, L. Leblanc, V. Bouyer, and C. Moreau, Evaluation of Four High Velocity Thermal Spray Guns Using WC-10% Co-4% Cr Cermets, J. Therm. Spray Technol., 2002, 11(1), p 86-94CrossRef
    13.M. Oksa, E. Turunen, T. Suhonen, T. Varis, and S.-P. Hannula, Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications, Coatings, 2011, 1(1), p 17-52CrossRef
    14.A. Wank, A. Schwenk, B. Wielage, T. Grund, E. Friesen, and H. Pokhmurska, Behavior of Thermally Sprayed Wear Protective Coatings Exposed to Different Abrasive Wear Conditions in Comparison to Hard Chromium Platings, Proceedings of the International Thermal Spray Conference, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and G. Montavon, Ed., (Beijing), ASM International, 2007, p 1011-1016
    15.C. Lyphout and K. Sato, Screening Design of Hard Metal Feedstock Powders for Supersonic Air Fuel Processing, Surf. Coat. Technol., 2014, 258, p 447-457CrossRef
    16.T. Varis, T. Suhonen, A. Ghabchi, A. Valarezo, S. Sampath, X. Liu, and S.P. Hannula, Formation Mechanisms, Structure, and Properties of HVOF-Sprayed WC-CoCr Coatings: An Approach Toward Process Maps, J. Therm. Spray Technol., 2014, 23(6), p 1009-1018CrossRef
    17.Q. Wang, Z. Chen, L. Li, and G. Yang, The Parameters Optimization and Abrasion Wear Mechanism of Liquid Fuel HVOF Sprayed Bimodal Wc-12Co Coating, Surf. Coat. Technol., 2012, 206(8-9), p 2233-2241CrossRef
    18.W. Tillmann, E. Vogli, I. Baumann, G. Matthaeus, and T. Ostrowski, Influence of the HVOF Gas Composition on the Thermal Spraying of WC-Co Submicron Powders (−8 + 1 μm) to Produce Superfine Structured Cermet Coatings, J. Therm. Spray Technol., 2008, 17(5-6), p 924-932CrossRef
    19.J.A. Picas, M. Punset, M.T. Baile, E. Martín, and A. Forn, Effect of Oxygen/Fuel Ratio on the in-Flight Particle Parameters and Properties of HVOF WC-CoCr Coatings, Surf. Coat. Technol., 2011, 205(SUPPL. 2), p S364-S368CrossRef
    20.A.S.M. Ang, H. Howse, S.A. Wade, and C.C. Berndt, Development of Processing Windows for New Generation HOVF Carbide-Based Coatings, Proceedings of the International Thermal Spray Conference, A. McDonald, A. Agarwal, G. Bolelli, A. Concustell, Y.-C. Lau, F.-L. Toma, E. Turunen, and C. Widener, Ed., (Long Beach, California, USA), ASM International, 2015, p 976-981
    21.C. Moreau, M. Lamontagne, and P. Cielo, Method and Apparatus for Monitoring the Temperature and Velocity of Plasma Sprayed Particles, US5180921 A. U. S. Patent Office, 1993
    22. ASTM E2109—01 (2007) Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings, ASTM International, West Conshohocken, PA, 2007
    23.A.S.M. Ang and C.C. Berndt, A Review of Testing Methods for Thermal Spray Coatings, Int. Mater. Rev., 2014, 59(4), p 179-223CrossRef
    24. ASTM C1327—08 Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics, ASTM International, West Conshohocken, PA, 2008
    25.L. Zhao, M. Maurer, F. Fischer, and E. Lugscheider, Study of HVOF Spraying of WC-CoCr Using On-line Particle Monitoring, Surf. Coat. Technol., 2004, 185(2-3), p 160-165CrossRef
    26.X. Guo, M.P. Planche, J. Chen, and H. Liao, Relationships between In-flight Particle Characteristics and Properties of HVOF Sprayed Wc-CoCr Coatings, J. Mater. Process. Technol., 2014, 214(2), p 456-461CrossRef
    27.K. Bobzin, F.B.G. Ernst, J.B. Zwick, M. Brühl, and G. Matthäus, Analysis of In-flight Particle Properties of Ultrafine Powders, Proceedings of the International Thermal Spray Conference, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Ed., (Beijing), ASM International, 2007, p 582-587
    28.B.R. Marple and R.S. Lima, Process Temperature/Velocity-Hardness-Wear Relationships for High-Velocity Oxyfuel Sprayed Nanostructured and Conventional Cermet Coatings, J. Therm. Spray Technol., 2005, 14(1), p 67-76CrossRef
    29.I. López Báez, C. Poblano Salas, J. Muñoz Saldaña, and L. Trápaga Martínez, Effects of the Modification of Processing Parameters on Mechanical Properties of HVOF Cr2C3-25NiCr Coatings, J. Therm. Spray Technol., 2015, 24(6), p 938-946CrossRef
    30.W.C. Lih, S.H. Yang, C.Y. Su, S.C. Huang, I.C. Hsu, and M.S. Leu, Effects of Process Parameters on Molten Particle Speed and Surface Temperature and the Properties of HVOF CrC/NiCr Coatings, Surf. Coat. Technol., 2000, 133-134, p 54-60CrossRef
    31.D. Poirier, J.G. Legoux, and R.S. Lima, Engineering HVOF-Sprayed Cr3C2-NiCr Coatings: The Effect of Particle Morphology and Spraying Parameters on the Microstructure, Properties, and High Temperature Wear Performance, J. Therm. Spray Technol., 2013, 22(2-3), p 280-289CrossRef
    32.F.X. Ye, S.H. Wu, and A. Ohmori, Microstructure and Oxidation Behavior of Cr39Ni7C Cermet Coatings Deposited by Diamond Jet Spray Process, J. Therm. Spray Technol., 2008, 17(5-6), p 942-947CrossRef
    33.A.S.M. Ang, H. Howse, S.A. Wade, and C.C. Berndt, Manufacturing of Nickel Based Cermet Coatings by HVOF Process, Surface Engineering, 2015. doi:10.​1179/​1743294415Y.​0000000031
    34.S. Matthews, B. James, and M. Hyland, High Temperature Erosion of Cr3C2-NiCr Thermal Spray Coatings—The Role of Phase Microstructure, Surf. Coat. Technol., 2009, 203(9), p 1144-1153CrossRef
    35.Š. Houdková, M. Kašparová, and F. Zahálka, The Influence of Spraying Angle on Properties of HVOF Sprayed Hardmetal Coatings, J. Therm. Spray Technol., 2010, 19(5), p 893-901CrossRef
    36.S. Osawa, T. Itsukaichi, and R. Ahmed, Influence of Powder Size and Strength on HVOF Spraying -Mapping the Onset of Spitting, Proceedings of the International Thermal Spray Conference, C. Moreau and B.R. Marple, Ed., May 5-8, 2003 (Orlando, FL, USA), ASM International, 2003, p 1447-1453
    37.J.A. Picas, A. Forn, and G. Matthäus, HVOF Coatings as an Alternative to Hard Chrome for Pistons and Valves, Wear, 2006, 261(5-6), p 477-484CrossRef
    38.W. Tillmann, E. Vogli, I. Baumann, G. Kopp, and C. Weihs, Desirability-Based Multi-criteria Optimization of HVOF Spray Experiments to Manufacture Fine Structured Wear-Resistant 75Cr3C2-25(NiCr20) Coatings, J. Therm. Spray Technol., 2010, 19(1-2), p 392-408CrossRef
  • 作者单位:Andrew Siao Ming Ang (1) (2)
    Hugo Howse (3)
    Scott A. Wade (1) (2)
    Christopher C. Berndt (1) (2) (4)

    1. Industrial Research Institute Swinburne, Swinburne University of Technology, H66, P.O. Box 218, Hawthorn, VIC, 3122, Australia
    2. Defence Materials Technology Centre, 24 Wakefield St, Hawthorn, VIC, 3122, Australia
    3. United Surface Technologies Pty Ltd, 26-32 Aberdeen Road, Altona, VIC, 3018, Australia
    4. Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Surfaces and Interfaces and Thin Films
    Tribology, Corrosion and Coatings
    Materials Science
    Characterization and Evaluation Materials
    Operating Procedures and Materials Treatment
    Analytical Chemistry
  • 出版者:Springer Boston
  • ISSN:1544-1016
文摘
Optimized processing windows for spraying high-quality metal carbide-based coatings are developed using particle diagnostic technology. The cermet coatings were produced via the high-velocity oxygen fuel (HVOF) spray process and are proposed for service applications such as marine hydraulics. The traditional “trial and error” method for developing coating process parameters is not technically robust, as well as being costly and time consuming. Instead, this contribution investigated the use of real-time monitoring of parameters associated with the HVOF flame jets and particles using in-flight particle diagnostics. Subsequently, coatings can be produced with knowledge concerning the molten particle size, temperature, and velocity profile. The analytical results allow identification of optimized coating process windows, which translate to coatings of lower porosity and improved mechanical performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700