An incremental approach to unravel the neutrino mass hierarchy and CP violation with a long-baseline superbeam for large 胃13
详细信息    查看全文
  • 作者:Sanjib Kumar Agarwalla (1) Sanjib.Agarwalla@ific.uv.es
    Tracey Li (1) tracey.li@ific.uv.es
    Andr茅 Rubbia (2) andre.rubbia@cern.ch
  • 关键词:Keywords Neutrino Physics ; CP violation
  • 刊名:Journal of High Energy Physics
  • 出版年:2012
  • 出版时间:May 2012
  • 年:2012
  • 卷:2012
  • 期:5
  • 页码:DOI: 10.1007/JHEP05(
  • 全文大小:1.2 MB
  • 参考文献:1. B. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [
    2. GNO collaboration, M. Altmann et al., Complete results for five years of GNO solar neutrino observations, Phys. Lett. B 616 (2005) 174 [hep-ex/0504037] [INSPIRE]. <Occurrence Type="Bibcode"><Handle>2005PhLB..616..174G</Handle></Occurrence>
    3. Super-Kamkiokande collaboration, J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I, Phys. Rev. D 73 (2006) 112001 [hep-ex/0508053] [INSPIRE]. <Occurrence Type="Bibcode"><Handle>2006PhRvD..73k2001H</Handle></Occurrence>
    4. SNO collaboration, Q. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [
    5. SNO collaboration, B. Aharmim et al., An independent measurement of the total active B-8 solar neutrino flux using an array of 3 He proportional counters at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 101 (2008) 111301 [
    6. SNO collaboration, B. Aharmim et al., Low energy threshold analysis of the phase I and phase II data sets of the Sudbury Neutrino Observatory, Phys. Rev. C 81 (2010) 055504 [arXiv:0910.2984] [INSPIRE]. <Occurrence Type="Bibcode"><Handle>2010PhRvC..81e5504A</Handle></Occurrence>
    7. Borexino collaboration, C. Arpesella et al., Direct measurement of the 7 Be solar neutrino flux with 192 days of borexino data, Phys. Rev. Lett. 101 (2008) 091302 [
    8. Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [
    9. Super-Kamiokande collaboration, Y. Ashie et al., A measurement of atmospheric neutrino oscillation parameters by Super-Kamiokande I, Phys. Rev. D 71 (2005) 112005 [hep-ex/0501064] [INSPIRE]. <Occurrence Type="Bibcode"><Handle>2005PhRvD..71k2005A</Handle></Occurrence>
    10. KamLAND collaboration, T. Araki et al., Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion, Phys. Rev. Lett. 94 (2005) 081801 [
    11. KamLAND collaboration, S. Abe et al., Precision measurement of neutrino oscillation parameters with KamLAND, Phys. Rev. Lett. 100 (2008) 221803 [
    12. K2K collaboration, M. Ahn et al., Measurement of neutrino oscillation by the K2K experiment, Phys. Rev. D 74 (2006) 072003 [hep-ex/0606032] [INSPIRE]. <Occurrence Type="Bibcode"><Handle>2006PhRvD..74g2003A</Handle></Occurrence>
    13. MINOS collaboration, P. Adamson et al., Measurement of neutrino oscillations with the MINOS detectors in the NuMI beam, Phys. Rev. Lett. 101 (2008) 131802 [
    14. T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [
    15. MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802 [
    16. G. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. Rotunno, Evidence of θ 13 > 0 from global neutrino data analysis, Phys. Rev. D 84 (2011) 053007 [arXiv:1106.6028] [INSPIRE]. <Occurrence Type="Bibcode"><Handle>2011PhRvD..84e3007F</Handle></Occurrence>
    17. T. Schwetz, M. Tortola and J. Valle, Where we are on θ 13 : addendum to ‘Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters’, New J. Phys. 13 (2011) 109401 [
    18. T2K collaboration, Y. Oyama, Current status of the T2K experiment, J. Phys. Conf. Ser. 347 (2012) 012005 [
    19. Double CHOOZ collaboration, M. Kuze, Latest news from Double CHOOZ reactor neutrino experiment, arXiv:1109.0074 [INSPIRE].
    20. RENO collaboration, J. Ahn et al., RENO: an experiment for neutrino oscillation parameter θ 13 using reactor neutrinos at Yonggwang, arXiv:1003.1391 [INSPIRE].
    21. Daya Bay collaboration, C.-J. Lin, Status of the Daya Bay reactor neutrino oscillation experiment, PoS(ICHEP 2010)305 [arXiv:1101.0261] [INSPIRE].
    22. NOvA collaboration, D. Ayres et al., NOvA: proposal to build a 30 kiloton off-axis detector to study ν μ → ν e oscillations in the NuMI beamline, hep-ex/0503053 [INSPIRE].
    23. P. Huber, M. Lindner, T. Schwetz and W. Winter, First hint for CP-violation in neutrino oscillations from upcoming superbeam and reactor experiments, JHEP 11 (2009) 044 [
    24. ISS Physics Working Group collaboration, A. Bandyopadhyay et al., Physics at a future neutrino factory and super-beam facility, Rept. Prog. Phys. 72 (2009) 106201 [
    25. M. Mezzetto and T. Schwetz, θ 13 : phenomenology, present status and prospect, J. Phys. G 37 (2010) 103001 [
    26. S.K. Agarwalla, P. Huber, J. Tang and W. Winter, Optimization of the neutrino factory, revisited, JHEP 01 (2011) 120 [
    27. S.K. Agarwalla, S. Choubey and A. Raychaudhuri, Neutrino mass hierarchy and θ 13 with a magic baseline beta-beam experiment, Nucl. Phys. B 771 (2007) 1 [
    28. S.K. Agarwalla, S. Choubey, A. Raychaudhuri and W. Winter, Optimizing the greenfield beta-beam, JHEP 06 (2008) 090 [
    29. D. Autiero et al., Large underground, liquid based detectors for astro-particle physics in Europe: scientific case and prospects, JCAP 11 (2007) 011 [arXiv:0705.0116] [INSPIRE]. <Occurrence Type="Bibcode"><Handle>2007JCAP...11..011A</Handle></Occurrence>
    30. A. Rubbia, A CERN-based high-intensity high-energy proton source for long baseline neutrino oscillation experiments with next-generation large underground detectors for proton decay searches and neutrino physics and astrophysics, arXiv:1003.1921 [INSPIRE].
    31. LAGUNA collaboration, D. Angus et al., The LAGUNA design study — towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches, arXiv:1001.0077 [INSPIRE].
    32. LAGUNA collaboration, A. Rubbia, The LAGUNA design study — towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches, Acta Phys. Polon. B 41 (2010) 1727 [INSPIRE].
    33. K. Abe et al., Letter of Intent: the hyper-kamiokande experiment — detector design and physics potential, arXiv:1109.3262 [INSPIRE].
    34. P. Huber and J. Kopp, Two experiments for the price of one? The role of the second oscillation maximum in long baseline neutrino experiments, JHEP 03 (2011) 013 [Erratum ibid. 05 (2011) 024] [arXiv:1010.3706] [INSPIRE].
    35. S.K. Raut, R.S. Singh and S.U. Sankar, Magical properties of 2540 km baseline superbeam experiment, Phys. Lett. B 696 (2011) 227 [
    36. A. Dighe, S. Goswami and S. Ray, 2540 km: bimagic baseline for neutrino oscillation parameters, Phys. Rev. Lett. 105 (2010) 261802 [
    37. G.A. Nuijten, LAGUNA design study, underground infrastructures and engineering, J. Phys. Conf. Ser. 308 (2011) 012029 [
    38. A. Bueno, A. Martinez de la Ossa, S. Navas and A. Rubbia, Statistical pattern recognition: application to ν μ → ν τ oscillation searches based on kinematic criteria, JHEP 11 (2004) 014 [
    39. M. Diwan et al., Very long baseline neutrino oscillation experiments for precise measurements of mixing parameters and CP-violating effects, Phys. Rev. D 68 (2003) 012002 [hep-ph/0303081] [INSPIRE]. <Occurrence Type="Bibcode"><Handle>2003PhRvD..68a2002D</Handle></Occurrence>
    40. V. Barger et al., Report of the U.S. long baseline neutrino experiment study, arXiv:0705.4396 [INSPIRE].
    41. LBNE collaboration, T. Akiri et al., The 2010 interim report of the Long-Baseline Neutrino Experiment collaboration physics working groups, arXiv:1110.6249 [INSPIRE].
    42. A. Rubbia, Experiments for CP-violation: a giant liquid argon scintillation, Cherenkov and charge imaging experiment?, pg. 321, hep-ph/0402110 [INSPIRE].
    43. A. Rubbia, Underground neutrino detectors for particle and astroparticle science: the Giant Liquid Argon Charge Imaging ExpeRiment (GLACIER), J. Phys. Conf. Ser. 171 (2009) 012020 [
    44. ICARUS collaboration, S. Amerio et al., Design, construction and tests of the ICARUS T600 detector, Nucl. Instrum. Meth. A 527 (2004) 329 [INSPIRE]. <Occurrence Type="Bibcode"><Handle>2004NIMPA.527..329A</Handle></Occurrence>
    45. A. Ferrari, A. Rubbia, C. Rubbia and P. Sala, Proton driver optimization for new generation neutrino superbeams to search for subleading ν μ → ν e oscillations (θ 13 angle), New J. Phys. 4 (2002) 88 [
    46. V. Barger, P. Huber, D. Marfatia and W. Winter, Upgraded experiments with super neutrino beams: reach versus exposure, Phys. Rev. D 76 (2007) 031301 [hep-ph/0610301] [INSPIRE]. <Occurrence Type="Bibcode"><Handle>2007PhRvD..76c1301B</Handle></Occurrence>
    47. V. Barger, P. Huber, D. Marfatia and W. Winter, Which long-baseline neutrino experiments are preferable?, Phys. Rev. D 76 (2007) 053005 [hep-ph/0703029] [INSPIRE]. <Occurrence Type="Bibcode"><Handle>2007PhRvD..76e3005B</Handle></Occurrence>
    48. S. Petcov and T. Schwetz, Determining the neutrino mass hierarchy with atmospheric neutrinos, Nucl. Phys. B 740 (2006) 1 [
    49. A. Samanta and A.Y. Smirnov, The 2-3 mixing and mass split: atmospheric neutrinos and magnetized spectrometers, JHEP 07 (2011) 048 [
    50. L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE]. <Occurrence Type="Bibcode"><Handle>1978PhRvD..17.2369W</Handle></Occurrence>
    51. S. Mikheev and A.Y. Smirnov, Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [Yad. Fiz. 42 (1985) 1441] [INSPIRE].
    52. V.D. Barger, K. Whisnant, S. Pakvasa and R. Phillips, Matter effects on three-neutrino oscillations, Phys. Rev. D 22 (1980) 2718 [INSPIRE]. <Occurrence Type="Bibcode"><Handle>1980PhRvD..22.2718B</Handle></Occurrence>
    53. A. Cervera et al., Golden measurements at a neutrino factory, Nucl. Phys. B 579 (2000) 17 [Erratum ibid. B 593 (2001) 731] [hep-ph/0002108] [INSPIRE].
    54. M. Freund, P. Huber and M. Lindner, Systematic exploration of the neutrino factory parameter space including errors and correlations, Nucl. Phys. B 615 (2001) 331 [
    55. A. Dziewonski and D. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Interiors 25 (1981) 297 [
    56. J. Burguet-Castell, M. Gavela, J. Gomez-Cadenas, P. Hernandez and O. Mena, On the measurement of leptonic CP-violation, Nucl. Phys. B 608 (2001) 301 [
    57. H. Minakata and H. Nunokawa, Exploring neutrino mixing with low-energy superbeams, JHEP 10 (2001) 001 [
    58. G.L. Fogli and E. Lisi, Tests of three flavor mixing in long baseline neutrino oscillation experiments, Phys. Rev. D 54 (1996) 3667 [hep-ph/9604415] [INSPIRE]. <Occurrence Type="Bibcode"><Handle>1996PhRvD..54.3667F</Handle></Occurrence>
    59. V. Barger, D. Marfatia and K. Whisnant, Breaking eight fold degeneracies in neutrino CP-violation, mixing and mass hierarchy, Phys. Rev. D 65 (2002) 073023 [hep-ph/0112119] [INSPIRE]. <Occurrence Type="Bibcode"><Handle>2002PhRvD..65g3023B</Handle></Occurrence>
    60. P. Huber, M. Lindner and W. Winter, Superbeams versus neutrino factories, Nucl. Phys. B 645 (2002) 3 [
    61. G. Acquistapace et al., The CERN Neutrino beam to Gran Sasso (NGS), K. Elsener ed., CERN-98-02, CERN, Geneva Switzerland (1998) [INFN-AE-98-05] [INSPIRE].
    62. R. Baldy et al., The CERN Neutrino beam to Gran Sasso (NGS). Addendum to report CERN-98-02, INFN-AE-98-05, CERN-SL-99-034-DI,, CERN, Geneva Switzerland (1999) [CERN-SL-99-34-DI] [INFN-AE-99-05] [INFN-AE-99-5] [INSPIRE].
    63. A. Longhin, Optimization of neutrino fluxes for european Super-Beams, PoS(ICHEP 2010)325 [INSPIRE].
    64. A. Longhin, Neutrino fluxes for the LAGUNA sites webpage, http://irfu.cea.fr/en/Phocea/Pisp/index.php?id=72.
    65. I. Gil Botella and A. Rubbia, Decoupling supernova and neutrino oscillation physics with LAr TPC detectors, JCAP 08 (2004) 001 [hep-ph/0404151] [INSPIRE]. <Occurrence Type="Bibcode"><Handle>2004JCAP...08..001G</Handle></Occurrence>
    66. A. Cocco, A. Ereditato, G. Fiorillo, G. Mangano and V. Pettorino, Supernova relic neutrinos in liquid argon detectors, JCAP 12 (2004) 002 [hep-ph/0408031] [INSPIRE]. <Occurrence Type="Bibcode"><Handle>2004JCAP...12..002C</Handle></Occurrence>
    67. A. Meregaglia and A. Rubbia, Neutrino oscillation physics at an upgraded CNGS with large next generation liquid Argon TPC detectors, JHEP 11 (2006) 032 [
    68. A. Bueno et al., Nucleon decay searches with large liquid argon TPC detectors at shallow depths: atmospheric neutrinos and cosmogenic backgrounds, JHEP 04 (2007) 041 [
    69. A. Badertscher et al., A possible future long baseline neutrino and nucleon decay experiment with a 100 kton liquid argon TPC at Okinoshima using the J-PARC neutrino facility, arXiv:0804.2111 [INSPIRE].
    70. A. Badertscher et al., First operation of a double phase LAr large electron multiplier time projection chamber with a two-dimensional projective readout anode, Nucl. Instrum. Meth. A 641 (2011) 48 [arXiv:1012.0483] [INSPIRE]. <Occurrence Type="Bibcode"><Handle>2011NIMPA.641...48B</Handle></Occurrence>
    71. C. Rubbia et al., Underground operation of the ICARUS T600 LAr-TPC: first results, 2011 JINST 6 P07011 [arXiv:1106.0975] [INSPIRE].
    72. D.B. Cline, F. Sergiampietri, J.G. Learned and K. McDonald, LANNDD: a massive liquid argon detector for proton decay, supernova and solar neutrino studies and a neutrino factory detector, Nucl. Instrum. Meth. A 503 (2003) 136 [astro-ph/0105442] [INSPIRE]. <Occurrence Type="Bibcode"><Handle>2003NIMPA.503..136C</Handle></Occurrence>
    73. L. Bartoszek et al., FLARE, Fermilab liquid argon experiments: letter of intent, hep-ex/0408121 [INSPIRE].
    74. D.B. Cline, F. Raffaelli and F. Sergiampietri, LANNDD: a line of liquid argon TPC detectors scalable in mass from 200 tons to 100 ktons, 2006 JINST 1 T09001 [astro-ph/0604548] [INSPIRE].
    75. B. Baibussinov et al., A new, very massive modular liquid argon imaging chamber to detect low energy off-axis neutrinos from the CNGS beam: project MODULAr, Astropart. Phys. 29 (2008) 174 [
    76. D. Angeli et al., Towards a new liquid argon imaging chamber for the MODULAr project, 2009 JINST 4 P02003 [INSPIRE].
    77. L. Whitehead, private communication.
    78. Y. Ge, Study of atmospheric neutrino detection in liquid argon time projection chamber, Ph.D. thesis, Swiss Federal Institute of Technology Zurich, Zurich Switzerland (2006) [INSPIRE].
    79. M.D. Messier, Evidence for neutrino mass from observations of atmospheric neutrino with Super-Kamiokande, Ph.D. thesis, J.L. Stone Advisor, Boston University, Boston U.S.A. (1999) [INSPIRE].
    80. E. Paschos and J. Yu, Neutrino interactions in oscillation experiments, Phys. Rev. D 65 (2002) 033002 [hep-ph/0107261] [INSPIRE]. <Occurrence Type="Bibcode"><Handle>2002PhRvD..65c3002P</Handle></Occurrence>
    81. P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [
    82. P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [
    83. T. Schwetz, M. Tortola and J. Valle, Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters, New J. Phys. 13 (2011) 063004 [
    84. R.J. Geller and T. Hara, Geophysical aspects of very long baseline neutrino experiments, Nucl. Instrum. Meth. A 503 (2001) 187 [hep-ph/0111342] [INSPIRE]. <Occurrence Type="Bibcode"><Handle>2003NIMPA.503..187G</Handle></Occurrence>
    85. T. Ohlsson and W. Winter, The role of matter density uncertainties in the analysis of future neutrino factory experiments, Phys. Rev. D 68 (2003) 073007 [hep-ph/0307178] [INSPIRE]. <Occurrence Type="Bibcode"><Handle>2003PhRvD..68g3007O</Handle></Occurrence>
    86. E. Kozlovskaya, J. Peltoniemi and J. Sarkamo, The density distribution in the earth along the CERN-Pyhasalmi baseline and its effect on neutrino oscillations, hep-ph/0305042 [INSPIRE].
    87. G. Fogli et al., Solar neutrino oscillation parameters after first KamLAND results, Phys. Rev. D 67 (2003) 073002 [hep-ph/0212127] [INSPIRE]. <Occurrence Type="Bibcode"><Handle>2003PhRvD..67g3002F</Handle></Occurrence>
  • 作者单位:1. Instituto de F铆sica Corpuscular, CSIC-Universitat de Val猫ncia, Apartado de Correos 22085, E-46071 Valencia, Spain2. ETH Zurich, Institute for Particle Physics, CH-8093 Z眉rich, Switzerland
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Elementary Particles and Quantum Field Theory
    Quantum Field Theories, String Theory
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1029-8479
文摘
Recent data from long-baseline neutrino oscillation experiments have provided new information on θ <sub>13sub>, hinting that 0.01 < <sub> ~ sub> \textsi\textn2 0.0{1}\mathop{ 2q<sub>13sub> < <sub> ~ sub> 0.1 {2}{\theta_{{{13}}}}\mathop{ at 2 σ confidence level. In the near future, further confirmation of this result with high significance will have a crucial impact on the optimization of the future long-baseline neutrino oscillation experiments designed to probe the neutrino mass ordering and leptonic CP violation. In this context, we expound in detail the physics reach of an experimental setup where neutrinos produced in a conventional wide-band beam facility at CERN are observed in a proposed Giant Liquid Argon detector at the Pyhasalmi mine, at a distance of 2290 km. Due to the strong matter effects and the high detection efficiency at both the first and second oscillation maxima, this particular setup would have unprecedented sensitivity to the neutrino mass ordering and leptonic CP violation in the light of the emerging hints of large θ <sub>13sub>. With a 10 to 20 kt ‘pilot’ detector and just a few years of neutrino beam running, the neutrino mass hierarchy could be determined, irrespective of the true values of δ <sub>CPsub> and the mass hierarchy, at 3 σ (5 σ) confidence level if sin2 2θ <sub>13sub>(true) = 0.05 (0.1). With the same exposure, we start to have 3 σ sensitivity to CP violation if sin2 2θ <sub>13sub>(true) > 0.05, in particular testing maximally CP-violating scenarios at a high confidence level. After optimizing the neutrino and anti-neutrino running fractions, we study the performance of the setup as a function of the exposure, identifying three milestones to have roughly 30%, 50% and 70% coverage in δ <sub> C P sub> (true) for 3 σ CP violation discovery. For comparison, we also study the CERN to Slanic baseline of 1540 km. This work nicely demonstrates that an incremental program, staged in terms of the exposure, can achieve the desired physics goals within a realistically feasible timescale, and produce significant new results at each stage.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700