A versatile chemical conversion synthesis of Cu2S nanotubes and the photovoltaic activities for dye-sensitized solar cell
详细信息    查看全文
  • 作者:Xuemin Shuai (3)
    Wenzhong Shen (4)
    Zhaoyang Hou (3)
    Sanmin Ke (3)
    Chunlong Xu (3)
    Cheng Jiang (5)

    3. Department of Applied Physics
    ; Chang鈥檃n University ; Xi鈥檃n ; 710064 ; China
    4. Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics and Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education)
    ; Department of Physics ; Shanghai Jiao Tong University ; Shanghai ; 200240 ; China
    5. School of Physics and Electronic Electrical Engineering
    ; Huaiyin Normal University ; 111 West Chang Jiang Road ; Huaian ; 223300 ; China
  • 关键词:Nanotubes ; Chemical transformation ; Cation exchange ; Growth mechanism ; Optical and photovoltaic properties
  • 刊名:Nanoscale Research Letters
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:9
  • 期:1
  • 全文大小:1,085 KB
  • 参考文献:1. Iijima, S (1991) Helical microtubules of graphite carbon. Nature 354: pp. 56-58 CrossRef
    2. Xia, YN, Yang, PD, Sun, YG, Wu, YY, Mayers, B, Gates, B, Yin, YD, Kim, F, Yan, HQ (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15: pp. 353-389 CrossRef
    3. Haradam, M, Adachi, M (2000) Surfactant-mediated fabrication of silica nanotubes. Adv Mater 12: pp. 839-841 CrossRef
    4. Hu, JT, Odom, TW, Lieber, CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res 32: pp. 435-445 CrossRef
    5. Xiong, YJ, Mayers, BT, Xia, YN (2005) Some recent developments in the chemical synthesis of inorganic nanotubes. Chem Commun. pp. 5013-5022
    6. Remskar, M (2004) Inorganic nanotubes. Adv Mater 16: pp. 1497-1504 CrossRef
    7. Martin, CR, Kohli, P (2003) The emerging field of nanotube biotechnology. Nat Rev Drug Discov 2: pp. 29-37 CrossRef
    8. Lee, SB, Mitchell, DT, Trofin, L, Nevanen, TK, Soderlund, H, Martin, CR (2002) Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science 296: pp. 2198-2200 CrossRef
    9. Goldberger, J, Fan, R, Yang, PD (2006) Inorganic nanotubes: a novel platform for nanofluidics. Acc Chem Res 39: pp. 239-248 CrossRef
    10. Kovtyukhova, NI, Mallouk, TE, Mayer, TS (2003) Templated surface sol鈥揼el synthesis of SiO2 nanotubes and SiO2-insulated metal nanowires. Adv Mater 15: pp. 780-785 CrossRef
    11. Niu, HJ, Gao, MY (2006) Diameter-tunable CdTe nanotubes templated by 1D nanowires of cadmium thiolate polymer. Angew Chem Int Ed 45: pp. 6462-6466 CrossRef
    12. Fan, R, Wu, YY, Li, DY, Yue, M, Majumdar, A, Yang, PD (2003) Fabrication of silica nanotube arrays from vertical silicon nanowire templates. J Am Chem Soc 125: pp. 5254-5255 CrossRef
    13. Yan, CL, Xue, DF (2007) Electroless deposition of aligned ZnO taper-tubes in a strong acidic medium. Electrochem Commun 9: pp. 1247-1251 CrossRef
    14. Cao, XB, Zhao, C, Lan, XM, Gao, GJ, Qian, WH, Guo, Y (2007) Microwave-enhanced synthesis of Cu3Se2 nanoplates and assembly of photovoltaic CdTe-Cu3Se2 clusters. J Phys Chem C 111: pp. 6658-6662 CrossRef
    15. Hu, JQ, Meng, XM, Jiang, Y, Lee, CS, Lee, ST (2003) Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers. Adv Mater 15: pp. 70-73 CrossRef
    16. Wu, GS, Zhang, LD, Cheng, BC, Xie, T, Yuan, XY (2004) Synthesis of Eu2O3 nanotube arrays through a facile sol鈥揼el template approach. J Am Chem Soc 126: pp. 5976-5977 CrossRef
    17. Mu, C, Yu, YX, Wang, RM, Wu, K, Xu, DS, Guo, GL (2004) Uniform metal nanotube arrays by multistep template replication and electrodeposition. Adv Mater 16: pp. 1550-1553 CrossRef
    18. Lee, W, Yoo, H-I, Lee, J-K (2001) Template route toward a novel nanostructured superionic conductor film; AgI nanorod/纬-Al2O3. Chem Commun. pp. 2530-2531
    19. Xu, NS, Huq, SE (2005) Novel cold cathode materials and applications. Mater Sci Eng R 48: pp. 47-189 CrossRef
    20. Du, XS, Yu, ZZ, Dasari, A, Ma, J, Meng, YZ, Mai, YW (2006) Facile synthesis and assembly of Cu2S nanodisks to corncoblike nanostructures. Chem Mater 18: pp. 5156-5158 CrossRef
    21. Feng, XP, Li, YX, Liu, HB, Li, YL, Cui, S, Wang, N, Jiang, L, Liu, XF, Yuan, MJ (2007) Controlled growth and field emission properties of CuS nanowalls. Nanotechnology 18: pp. 145706 CrossRef
    22. Sakamoto, T, Sunamura, H, Kawaura, H, Hasegawa, T, Nakayama, T, Aono, M (2003) Nanometer-scale switches using copper sulfide. Appl Phys Lett 82: pp. 3032-3034 CrossRef
    23. Sagade, A (2008) Copper sulphide (CuxS) as an ammonia gas sensor working at room temperature. Sens Actuators B 133: pp. 135-143 CrossRef
    24. Neville, RC (1995) Solar Energy Conversion: the Solar Cell. Elsevier, Amsterdam
    25. Hodes, G, Manassen, J, Cahen, D (1980) Electrocatalytic electrodes for the polysulfide redox system. J Electrochem Soc 127: pp. 544-549 CrossRef
    26. Liu, ZP, Xu, D, Liang, JB, Shen, JM, Zhang, SY, Qian, YT (2005) Growth of Cu2S ultrathin nanowires in a binary surfactant solvent. J Phys Chem B 109: pp. 10699-10704 CrossRef
    27. Larsen, TH, Sigman, M, Ghezelbash, A, Christopher Doty, R, Korgel, BA (2003) Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derived precursor. J Am Chem Soc 125: pp. 5638-5639 CrossRef
    28. Mehdi, MK, Masoud, SN, Majid, R (2013) Preparation and characterization of Cu2S nanoparticles via ultrasonic method. J Clust Sci 24: pp. 927-934 CrossRef
    29. Chen, YB, Chen, L, Wu, LM (2008) The structure-controlling solventless synthesis and optical properties of uniform Cu2S nanodisk. Chem Eur J 14: pp. 11069-11075 CrossRef
    30. Wu, Y, Wadia, C, Ma, WL, Sadtler, B, Paul Alivisatos, A (2008) Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. Nano Lett 8: pp. 2551-2555 CrossRef
    31. Liu, X, Wang, XL, Zhou, B, Law, WC, Cartwright, AN, Swihart, MT (2013) Size-controlled synthesis of Cu2-x E (E鈥?鈥塖, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films. Adv Funct Mater 23: pp. 1256-1264 CrossRef
    32. Zhang, HT, Wu, G, Chen, XH (2005) Large-scale synthesis and self-assembly of monodisperse hexagon Cu2S nanoplates. Langmuir 21: pp. 4281-4282 CrossRef
    33. Zhu, YF, Fan, DH, Shen, WZ (2008) A general chemical conversion route to synthesize various ZnO-based core/shell structures. J Phys Chem C 112: pp. 10402-10406 CrossRef
    34. Zhu, YF, Fan, DH, Shen, WZ (2008) Chemical conversion synthesis and optical properties of metal sulfide hollow microspheres. Langmuir 24: pp. 11131-11136 CrossRef
    35. Shuai, XM, Shen, WZ (2011) A facile chemical conversion synthesis of ZnO/ZnS core/shell nanorods and diverse metal sulfide nanotubes. J Phys Chem C 115: pp. 6415-6422 CrossRef
    36. Shuai, XM, Shen, WZ (2012) A facile chemical conversion synthesis of Sb2S3 nanotubes and the visible light-driven photocatalytic activities. Nanoscale Res Lett 7: pp. 199 CrossRef
    37. Deng, MH, Zhang, QX, Huang, SQ, Li, DM, Luo, YH, Shen, Q, Toyoda, T, Meng, QB (2010) Low-cost flexible nano-sulfide/carbon composite counter electrode for quantum-dot-sensitized solar cell. Nanoscale Res Lett 5: pp. 986-990 CrossRef
    38. Dloczik, L, Konenkamp, R (2003) Nanostructure transfer in semiconductors by ion exchange. Nano lett 3: pp. 651-653 CrossRef
    39. Kumar, B, Gong, H, Chow, SY, Tripathy, S, Hua, YN (2006) Photoluminescence and multiphonon resonant Raman scattering in low-temperature grown ZnO nanostructures. Appl Phys Lett 89: pp. 071922 CrossRef
    40. Weast, RC (1988) CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton
    41. Minceva-Sukarova, B, Najdoski, M, Grozdanov, I, Chunnilall, CJ (1997) Raman spectra of thin solid films of some metal sulfides. J Mol Struct 410鈥?11: pp. 267-270
    42. Wang, SY, Wang, W, Lu, ZH (2003) Asynchronous-pulse ultrasonic spray pyrolysis deposition of CuxS (x鈥?鈥?, 2) thin films. Mater Sci Eng B 103: pp. 184-188 CrossRef
    43. Lai, CX, Wu, QB, Chen, J, Wen, LS, Ren, S (2010) Large-area aligned branched Cu2S nanostructure arrays: room-temperature synthesis and growth mechanism. Nanotechnology 21: pp. 215602 CrossRef
  • 刊物主题:Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine;
  • 出版者:Springer US
  • ISSN:1556-276X
文摘
A versatile, low-temperature, and low-cost chemical conversion synthesis has been developed to prepare copper sulfide (Cu2S) nanotubes. The successful chemical conversion from ZnS nanotubes to Cu2S ones profits by the large difference in solubility between ZnS and Cu2S. The morphology, structure, and composition of the yielded products have been examined by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction measurements. We have further successfully employed the obtained Cu2S nanotubes as counter electrodes in dye-sensitized solar cells. The light-to-electricity conversion results show that the Cu2S nanostructures exhibit high photovoltaic conversion efficiency due to the increased surface area and the good electrocatalytical activity of Cu2S. The present chemical route provides a simple way to synthesize Cu2S nanotubes with a high surface area for nanodevice applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700