Ultra-Uniform Field Distribution in a Finite-Width Metal–Dielectric–Metal Waveguide
详细信息    查看全文
  • 作者:Qing Liu (1)
    King Seng Chiang (2)
  • 关键词:Surface plasmons ; Waveguides ; Integrated optics devices
  • 刊名:Plasmonics
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:8
  • 期:2
  • 页码:277-282
  • 全文大小:558KB
  • 参考文献:1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824 CrossRef
    2. Berini P (2000) Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phys Rev B 61:10484 CrossRef
    3. Charbonneau R, Lahoud N, Mattiussi G, Berini P (2005) Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons. Opt Express 13:977 CrossRef
    4. Veronis G, Fan S (2005) Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Opt Lett 30:3359 CrossRef
    5. Liu L, Han Z, He S (2005) Novel surface plasmon waveguide for high integration. Opt Express 13:6645 CrossRef
    6. Pile DFP, Ogawa T, Gramotnev DK, Matsuzaki Y, Vernon KC, Yamaguchi K, Okamoto T, Haraguchi M, Fukui M (2005) Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl Phys Lett 87:261114 CrossRef
    7. Bozhevolnyi SI, Volkov VS, Devaux E, Ebbesen TW (2005) Channel plasmon–polariton guiding by subwavelength metal grooves. Phys Rev Lett 95:046802 CrossRef
    8. Pile DFP, Ogawa T, Gramotnev DK, Okamoto T, Haraguchi M, Fukui M, Matsuo S (2005) Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Appl Phys Lett 87:061106 CrossRef
    9. Homola J, Yee S, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators 54:3 CrossRef
    10. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528 CrossRef
    11. Han Z, Liu L, Forsberg E (2006) Ultra-compact directional couplers and Mach–Zehnder interferometers employing surface plasmon polaritons. Opt Commun 259:690 CrossRef
    12. Veronis G, Fan S (2005) Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides. Appl Phys Lett 87:131102 CrossRef
    13. Hosseini A, Massoud Y (2007) Nanoscale surface plasmon based resonator using rectangular geometry. Appl Phys Lett 90:181102 CrossRef
    14. Zhang ZY, Wang JD, Zhao YN, Lu D, Xiong ZH (2011) Numerical investigation of a branch-shaped filter based on metal-insulator-metal waveguide. Plasmonics 6:773 CrossRef
    15. Lee DJ, Yim HD, Lee SG, O BH (2011) Tiny surface plasmon resonance sensor integrated on silicon waveguide based on vertical coupling into finite metal-insulator-metal plasmonic waveguide. Opt Lett 19:19895
    16. Tamura M, Kagata H (2010) Analysis of metal–insulator–metal structure and its application to sensor. IEEE Trans Microw Theory Tech 58:3954 CrossRef
    17. Zhu JH, Huang XG, Mei X (2011) High-resolution plasmonic refractive-index sensor based on metal–insulator–metal structure. Chin Phys Lett 28:054205 CrossRef
    18. Yan M, Qiu M (2007) Guided plasmon polariton at 2D metal corners. J Opt Soc Am B 24:2333 CrossRef
    19. Al-Bader SJ (2004) Optical transmission on metallic wires—fundamental modes. IEEE J Quantum Electron 40:325 CrossRef
    20. Palik ED (1985) Handbook of optical constants of solids. Academic, New York
  • 作者单位:Qing Liu (1)
    King Seng Chiang (2)

    1. Research Institute for Nanodevice & Bio Systems, Hiroshima University, 1-4-2 Kagamiyama Higashi-Hiroshima, Hiroshima, 739-8527, Japan
    2. Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, China
  • ISSN:1557-1963
文摘
We investigate the propagation characteristics of the fundamental surface plasmon polariton (SPP) mode of a finite-width metal–dielectric–metal waveguide. By changing the refractive index or the thickness of the dielectric layer of the waveguide, the SPP mode can be transformed from a mode confined in the dielectric layer into a mode confined around the metal corners. There always exists a condition at which the mode field distribution in the dielectric layer becomes almost perfectly uniform along the direction parallel to the metal layers, and this condition is insensitive to the width of the waveguide. It is also possible to obtain an ultra-uniform field distribution by controlling the refractive index of a different dielectric placed on both sides of the waveguide. The waveguide can be used as a basic structure for the realization of nanosized photonic devices and sensors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700