Relation between insertion torque and bone–implant contact percentage: an artificial bone study
详细信息    查看全文
  • 作者:Cheng Liu (1)
    Ming-Tzu Tsai (2)
    Heng-Li Huang (3)
    Michael Yuan-Chien Chen (3) (4)
    Jui-Ting Hsu (3)
    Kuo-Chih Su (1)
    Chih-Han Chang (1)
    Aaron Yu-Jen Wu (5)
  • 关键词:Initial implant stability ; Insertion torque ; Bone–implant contact ; Micro ; computed tomography
  • 刊名:Clinical Oral Investigations
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:16
  • 期:6
  • 页码:1679-1684
  • 全文大小:243KB
  • 参考文献:1. Huang HL, Chang YY, Lin DJ, Li YF, Chen KT, Hsu JT (2011) Initial stability and bone strain evaluation of the immediately loaded dental implant: an in vitro model study. Clin Oral Implants Res 22(7):691-98 CrossRef
    2. Huang HL, Fuh LJ, Tu MG, Hsu JT (2010) Effects of elasticity and structure of trabecular bone on the primary stability of dental implants. J Med Biol Eng 30:85-9 CrossRef
    3. Chiapasco M, Gatti C, Rossi E, Haefliger W, Markwalder TH (1997) Implant-retained mandibular overdentures with immediate loading. A retrospective multicenter study on 226 consecutive cases. Clin Oral Implants Res 8:48-7 CrossRef
    4. Ganeles J, Wismeijer D (2004) Early and immediately restored and loaded dental implants for single-tooth and partial-arch applications. Int J Oral Maxillofac Implants 19(Suppl):92-02
    5. Sevimay M, Turhan F, Kilicarslan MA, Eskitascioglu G (2005) Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent 93:227-34 CrossRef
    6. Hsu JT, Fuh LJ, Lin DJ, Shen YW, Huang HL (2009) Bone strain and interfacial sliding analyses of platform switching and implant diameter on an immediately loaded implant: experimental and three-dimensional finite element analyses. J Periodontol 80:1125-132 CrossRef
    7. Rabel A, Kohler SG, Schmidt-Westhausen AM (2007) Clinical study on the primary stability of two dental implant systems with resonance frequency analysis. Clin Oral Investig 11:257-65 CrossRef
    8. Jun SH, Chang BM, Weber HP, Kwon JJ (2010) Comparison of initial stability parameters and histomorphometric analysis of implants inserted into extraction sockets: human fresh cadaver study. Int J Oral Maxillofac Implants 25:985-90
    9. Meredith N, Shagaldi F, Alleyne D, Sennerby L, Cawley P (1997) The application of resonance frequency measurements to study the stability of titanium implants during healing in the rabbit tibia. Clin Oral Implants Res 8:234-43 CrossRef
    10. Turkyilmaz I, Tumer C, Ozbek EN, Tozum TF (2007) Relations between the bone density values from computerized tomography, and implant stability parameters: a clinical study of 230 regular platform implants. J Clin Periodontol 34:716-22 CrossRef
    11. Akkocaoglu M, Uysal S, Tekdemir I, Akca K, Cehreli MC (2005) Implant design and intraosseous stability of immediately placed implants: a human cadaver study. Clin Oral Implants Res 16:202-09 CrossRef
    12. Aparicio C, Perales P, Rangert B (2001) Tilted implants as an alternative to maxillary sinus grafting: a clinical, radiologic, and periotest study. Clin Implant Dent Relat Res 3:39-9 CrossRef
    13. Berthold C, Holst S, Schmitt J, Goellner M, Petschelt A (2010) An evaluation of the Periotest method as a tool for monitoring tooth mobility in dental traumatology. Dent Traumatol 26:120-28 CrossRef
    14. Lachmann S, Laval JY, Jager B, Axmann D, Gomez-Roman G, Groten M, Weber H (2006) Resonance frequency analysis and damping capacity assessment. Part 2: peri-implant bone loss follow-up. An in vitro study with the Periotest and Osstell instruments. Clin Oral Implants Res 17:80-4 CrossRef
    15. Noguerol B, Munoz R, Mesa F, de Dios LJ, O'Valle F (2006) Early implant failure. Prognostic capacity of Periotest: retrospective study of a large sample. Clin Oral Implants Res 17:459-64 CrossRef
    16. Degidi M, Perrotti V, Strocchi R, Piattelli A, Iezzi G (2009) Is insertion torque correlated to bone–implant contact percentage in the early healing period? A histological and histomorphometrical evaluation of 17 human-retrieved dental implants. Clin Oral Implants Res 20:778-81 CrossRef
    17. Nkenke E, Hahn M, Weinzierl K, Radespiel-Troger M, Neukam FW, Engelke K (2003) Implant stability and histomorphometry: a correlation study in human cadavers using stepped cylinder implants. Clin Oral Implants Res 14:601-09 CrossRef
    18. Trisi P, Perfetti G, Baldoni E, Berardi D, Colagiovanni M, Scogna G, Pellico VS (2009) Implant micromotion is related to peak insertion torque and bone density. Clin Oral Implants Res 20:467-71 CrossRef
    19. Turkyilmaz I, Aksoy U, McGlumphy EA (2008) Two alternative surgical techniques for enhancing primary implant stability in the posterior maxilla: a clinical study including bone density, insertion torque, and resonance frequency analysis data. Clin Implant Dent Relat Res 10:231-37
    20. Ito Y, Sato D, Yoneda S, Ito D, Kondo H, Kasugai S (2008) Relevance of resonance frequency analysis to evaluate dental implant stability: simulation and histomorphometrical animal experiments. Clin Oral Implants Res 19:9-4
    21. Gedrange T, Hietschold V, Mai R, Wolf P, Nicklisch M, Harzer W (2005) An evaluation of resonance frequency analysis for the determination of the primary stability of orthodontic palatal implants. A study in human cadavers. Clin Oral Implants Res 16:425-31 CrossRef
    22. Rebaudi A, Koller B, Laib A, Trisi P (2004) Microcomputed tomographic analysis of the peri-implant bone. Int J Periodontics Restor Dent 24:316-25
    23. Ueda M, Matsuki M, Jacobsson M, Tjellstrom A (1991) Relationship between insertion torque and removal torque analyzed in fresh temporal bone. Int J Oral Maxillofac Implants 6:442-47
    24. Orlando B, Barone A, Giorno TM, Giacomelli L, Tonelli P, Covani U (2010) Insertion torque in different bone models with different screw pitch: an in vitro study. Int J Oral Maxillofac Implants 25:883-87
    25. Ottoni JM, Oliveira ZF, Mansini R, Cabral AM (2005) Correlation between placement torque and survival of single-tooth implants. Int J Oral Maxillofac Implants 20:769-76
    26. Akca K, Chang TL, Tekdemir I, Fanuscu MI (2006) Biomechanical aspects of initial intraosseous stability and implant design: a quantitative micro-morphometric analysis. Clin Oral Implants Res 17:465-72 CrossRef
    27. Misch CE, Qu Z, Bidez MW (1999) Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofac Surg 57:700-06 CrossRef
    28. Fuh LJ, Huang HL, Chen CS, Fu KL, Shen YW, Tu MG, Shen WC, Hsu JT (2010) Variations in bone density at dental implant sites in different regions of the jawbone. J Oral Rehabil 37:346-51 CrossRef
    29. Seong WJ, Kim UK, Swift JQ, Hodges JS, Ko CC (2009) Correlations between physical properties of jawbone and dental implant initial stability. J Prosthet Dent 101:306-18 CrossRef
    30. Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H (2003) Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 18:357-68
    31. Cha JY, Lim JK, Song JW, Sato D, Kenmotsu M, Inoue T, Park YC (2009) Influence of the length of the loading period after placement of orthodontic mini-implants on changes in bone histomorphology: microcomputed tomographic and histologic analysis. Int J Oral Maxillofac Implants 24:842-49
    32. American Society for Testing and Materials (2008) ASTM F1839-08 standard specification for rigid polyurethane foam for use as a standard material for testing orthopedic devices and instruments. American Society for Testing and Materials, West Conshohocken
  • 作者单位:Cheng Liu (1)
    Ming-Tzu Tsai (2)
    Heng-Li Huang (3)
    Michael Yuan-Chien Chen (3) (4)
    Jui-Ting Hsu (3)
    Kuo-Chih Su (1)
    Chih-Han Chang (1)
    Aaron Yu-Jen Wu (5)

    1. Institute of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
    2. Department of Biomedical Engineering, HungKuang University, Shalu, 433, Taiwan
    3. School of Dentistry, College of Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung, 404, Taiwan
    4. Division of Oral & Maxillofacial Surgery, China Medical University Hospital, 2 Yuh-Der Road, Taichung, 404, Taiwan
    5. Department of Dentistry, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
  • ISSN:1436-3771
文摘
Objectives The purpose of this study was to determine the correlation between the peak insertion torque value (ITV) of a dental implant and the bone–implant contact percentage (BIC%). Material and methods Dental implants were inserted into specimens comprising a 2-mm-thick artificial cortical shell representing cortical bone and artificial foam bone representing cancellous bone with four densities (groups 1 to 4-.32, 0.20, 0.16, and 0.12?g/cm3). Each specimen with an inserted implant was subjected to micro-computed tomography (micro-CT) scanning, from which the 3D BIC% values were calculated. Pearson’s correlation coefficients (r) between the ITV and BIC% were calculated. Results The ITVs in groups 1 to 4 were 56.2?±-.6 (mean±standard deviation), 45.6?±-.9, 43.3?±-.3, and 38.5?±-.4?N?cm, respectively, and the corresponding BIC% values were 41.5?±-.5%, 39.0?±-.0%, 30.8?±-.1%, and 26.2?±-.6%. Pearson’s correlation coefficient between the ITV and BIC% was r--.797 (P-lt;-.0001). Conclusion The initial implant stability, quantified as the ITV, was strongly positively correlated with the 3D BIC% obtained from micro-CT images. Clinical relevance The ITV of a dental implant can be used to predict the initial BIC%; this information may provide the clinician with important information on the optimal loading time.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700