OsMSRA4.1 and OsMSRB1.1, two rice plastidial methionine sulfoxide reductases, are involved in abiotic stress responses
详细信息    查看全文
  • 作者:Xiaoli Guo (1) (2)
    Yaorong Wu (1)
    Yiqin Wang (1)
    Yanmin Chen (1)
    Chengcai Chu (1)
  • 关键词:Methionine oxidation ; Methionine sulfoxide reductase ; Oxidative stress ; Abiotic stress ; Rice
  • 刊名:Planta
  • 出版年:2009
  • 出版时间:June 2009
  • 年:2009
  • 卷:230
  • 期:1
  • 页码:227-238
  • 全文大小:907KB
  • 参考文献:1. Bechtold U, Murphy DJ, Mullineaux PM (2004) / Arabidopsis peptide methionine sulfoxide reductase2 prevents cellular oxidative damage in long nights. Plant Cell 16:908-19 CrossRef
    2. Beckman KB, Ames BN (1997) Oxidative decay of DNA. J Biol Chem 272:19633-9636 CrossRef
    3. Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313-0316 CrossRef
    4. Boschi-Muller S, Gand A, Branlant G (2008) The methionine sulfoxide reductases: catalysis and substrate specificities. Arch Biochem Biophys 474:266-73 CrossRef
    5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-54 CrossRef
    6. Brot N, Weissbach H (2000) Peptide methionine sulfoxide reductase: biochemistry and physiological role. Biopolymers 55:288-96 CrossRef
    7. Brot N, Weissbach L, Werth J, Weissbach H (1981) Enzymatic reduction of protein-bound methionine sulfoxide. Proc Natl Acad Sci USA 78:2155-158 CrossRef
    8. Brot N, Fliss H, Coleman T, Weissbach H (1984) Enzymatic reduction of methionine sulfoxide residues in proteins and peptides. Methods Enzymol 107:352-60 CrossRef
    9. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156-59 CrossRef
    10. Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703:93-09
    11. Friguet B (2002) Protein repair and degradation during aging. Sci World J 2:248-54
    12. Gabbita SP, Aksenov MY, Lovell MA, Markesbery WR (1999) Decrease in peptide methionine sulfoxide reductase in Alzheimer’s disease brain. J Neurochem 73:1660-666 CrossRef
    13. Glaser CB, Yamin G, Uversky VN, Fink AL (2005) Methionine oxidation, alpha-synuclein and Parkinson’s disease. Biochim Biophys Acta 1703:157-69
    14. Grimaud R, Ezraty B, Mitchell JK, Lafitte D, Briand C, Derrick PJ, Barras F (2001) Repair of oxidized proteins: identification of a new methionine sulfoxide reductase. J Biol Chem 276:48915-8920 CrossRef
    15. Gustavsson N, Kokke BP, Harndahl U, Silow M, Bechtold U, Poghosyan Z, Murphy D, Boelens WC, Sundby C (2002) A peptide methionine sulfoxide reductase highly expressed in photosynthetic tissue in / Arabidopsis thaliana can protect the chaperone-like activity of a chloroplast-localized small heat shock protein. Plant J 29:545-53 CrossRef
    16. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I: kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189-98 CrossRef
    17. Hoshi T, Heinemann S (2001) Regulation of cell function by methionine oxidation and reduction. J Physiol 531:1-1 CrossRef
    18. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163-68
    19. Kauffmann B, Aubry A, Favier F (2005) The three-dimensional structures of peptide methionine sulfoxide reductases: current knowledge and open questions. Biochim Biophys Acta 1703:249-60
    20. Kim HY, Gladyshev VN (2004) Methionine sulfoxide reduction in mammals: characterization of methionine-R-sulfoxide reductases. Mol Biol Cell 15:1055-064 CrossRef
    21. Kim HY, Gladyshev VN (2006) Alternative first exon splicing regulates subcellular distribution of methionine sulfoxide reductases. BMC Mol Biol 7:11 CrossRef
    22. Kryukov GV, Kumar RA, Koc A, Sun Z, Gladyshev VN (2002) Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase. Proc Natl Acad Sci USA 99:4245-250 CrossRef
    23. Kumar RA, Koc A, Cerny RL, Gladyshev VN (2002) Reaction mechanism, evolutionary analysis, and role of zinc in Drosophila methionine-R-sulfoxide reductase. J Biol Chem 277:37527-7535 CrossRef
    24. Kwon SJ, Kwon SI, Bae MS, Cho EJ, Park OK (2007) Role of the methionine sulfoxide reductase MsrB3 in cold acclimation in / Arabidopsis. Plant Cell Physiol 48:1713-723 CrossRef
    25. Lee BC, Le DT, Gladyshev VN (2008) Mammals reduce methionine-S-sulfoxide with MsrA and are unable to reduce methionine-R-sulfoxide, and this function can be restored with a yeast reductase. J Biol Chem 283:28361-8369 CrossRef
    26. Liu X, Bai X, Wang X, Chu C (2007) OsWRKY71, a rice transcription factor, is involved in rice defense response. J Plant Physiol 164:969-79 CrossRef
    27. Lowther WT, Brot N, Weissbach H, Honek JF, Matthews BW (2000) Thiol-disulfide exchange is involved in the catalytic mechanism of peptide methionine sulfoxide reductase. Proc Natl Acad Sci USA 97:6463-468 CrossRef
    28. Marchand C, Le Marechal P, Meyer Y, Miginiac-Maslow M, Issakidis-Bourguet E, Decottignies P (2004) New targets of / Arabidopsis thioredoxins revealed by proteomic analysis. Proteomics 4:2696-706 CrossRef
    29. Moskovitz J, Berlett BS, Poston JM, Stadtman ER (1997) The yeast peptide-methionine sulfoxide reductase functions as an antioxidant in vivo. Proc Natl Acad Sci USA 94:9585-589 CrossRef
    30. Moskovitz J, Flescher E, Berlett BS, Azare J, Poston JM, Stadtman ER (1998) Overexpression of peptide-methionine sulfoxide reductase in / Saccharomyces cerevisiae and human T cells provides them with high resistance to oxidative stress. Proc Natl Acad Sci USA 95:14071-4075 CrossRef
    31. Murray MB, Cape JN, Fowler D (1989) Quantification of frost damage in plant tissues by rates of electrolyte leakage. New Phytol 113:307-11 CrossRef
    32. Oh JE, Hong SW, Lee Y, Koh EJ, Kim K, Seo YW, Chung N, Jeong M, Jang CS, Lee B, Kim KH, Lee H (2005) Modulation of gene expressions and enzyme activities of methionine sulfoxide reductases by cold, ABA or high salt treatments in / Arabidopsis. Plant Sci 169:1030-036 CrossRef
    33. Olry A, Boschi-Muller S, Marraud M, Sanglier-Cianferani S, Van Dorsselear A, Branlant G (2002) Characterization of the methionine sulfoxide reductase activities of PILB, a probable virulence factor from / Neisseria meningitidis. J Biol Chem 277:12016-2022 CrossRef
    34. Rey P, Cuine S, Eymery F, Garin J, Court M, Jacquot JP, Rouhier N, Broin M (2005) Analysis of the proteins targeted by CDSP32, a plastidial thioredoxin participating in oxidative stress responses. Plant J 41:31-2 CrossRef
    35. Romero HM, Berlett BS, Jensen PJ, Pell EJ, Tien M (2004) Investigations into the role of the plastidial peptide methionine sulfoxide reductase in response to oxidative stress in / Arabidopsis. Plant Physiol 136:3784-794 CrossRef
    36. Rouhier N, Dos Santos CV, Tarrago L, Rey P (2006) Plant methionine sulfoxide reductase A and B multigenic families. Photosynth Res 89:247-62 CrossRef
    37. Ruan H, Tang XD, Chen ML, Joiner ML, Sun G, Brot N, Weissbach H, Heinemann SH, Iverson L, Wu CF, Hoshi T (2002) High-quality life extension by the enzyme peptide methionine sulfoxide reductase. Proc Natl Acad Sci USA 99:2748-753 CrossRef
    38. Sadanandom A, Poghosyan Z, Fairbairn DJ, Murphy DJ (2000) Differential regulation of plastidial and cytosolic isoforms of peptide methionine sulfoxide reductase in / Arabidopsis. Plant Physiol 123:255-64 CrossRef
    39. Sagher D, Brunell D, Hejtmancik JF, Kantorow M, Brot N, Weissbach H (2006) Thionein can serve as a reducing agent for the methionine sulfoxide reductases. Proc Natl Acad Sci USA 103:8656-661 CrossRef
    40. Schoneich C (2005) Methionine oxidation by reactive oxygen species: reaction mechanisms and relevance to Alzheimer’s disease. Biochim Biophys Acta 1703:111-19
    41. Singh VK, Moskovitz J (2003) Multiple methionine sulfoxide reductase genes in / Staphylococcus aureus: expression of activity and roles in tolerance of oxidative stress. Microbiology 149:2739-747 CrossRef
    42. Stadtman ER, Moskovitz J, Levine RL (2003) Oxidation of methionine residues of proteins: biological consequences. Antioxid Redox Signal 5:577-82 CrossRef
    43. Tarrago L, Laugier E, Rey P (2009) Protein-repairing methionine sulfoxide reductases in photosynthetic organisms: gene organization, reduction mechanisms, and physiological roles. Mol Plant 2:202-17 CrossRef
    44. Vieira Dos Santos C, Cuine S, Rouhier N, Rey P (2005) The / Arabidopsis plastidial methionine sulfoxide reductase B proteins: sequence and activity characteristics, comparison of the expression with plastidial methionine sulfoxide reductase A, and induction by photooxidative stress. Plant Physiol 138:909-22 CrossRef
    45. Vieira Dos Santos C, Laugier E, Tarrago L, Massot V, Issakidis-Bourguet E, Rouhier N, Rey P (2007) Specificity of thioredoxins and glutaredoxins as electron donors to two distinct classes of / Arabidopsis plastidial methionine sulfoxide reductases B. FEBS Lett 581:4371-376 CrossRef
    46. Wu Y, Wang Q, Ma Y, Chu C (2005) Isolation and expression analysis of salt up-regulated ESTs in upland rice using PCR-based subtractive suppression hybridization method. Plant Sci 168:847-53 CrossRef
    47. Zhang XH, Weissbach H (2008) Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductases. Biol Rev 83:249-57 CrossRef
  • 作者单位:Xiaoli Guo (1) (2)
    Yaorong Wu (1)
    Yiqin Wang (1)
    Yanmin Chen (1)
    Chengcai Chu (1)

    1. State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), 100101, Beijing, China
    2. Graduate School of the Chinese Academy of Sciences, 100039, Beijing, China
文摘
In proteins, methionine residues are especially sensitive to oxidation, leading to the formation of S- and R-methionine sulfoxide diastereoisomers, and these two methionine sulfoxides can be specifically reversed by two types of methionine sulfoxide reductases (MSRs), MSRA and MSRB. Previously, we have identified a gene encoding a putative MSR from NaCl-treated roots of Brazilian upland rice (Oryza sativa L. cv. IAPAR 9) via subtractive suppression hybridization (Wu et al. in Plant Sci 168:847-53, 2005). Blast database analysis indicated that at least four MSRA and three MSRB orthologs exist in rice, and two of them, OsMSRA4.1 and OsMSRB1.1, were selected for further functional analysis. Expression analysis showed that both OsMSRA4.1 and OsMSRB1.1 are constitutively expressed in all organs and can be induced by various stress conditions. Subcellular localization and in vitro activity assay revealed that both OsMSR proteins are targeted to the chloroplast and have MSR activity. Overexpression of either OsMSRA4.1 or OsMSRB1.1 in yeast enhanced cellular resistance to oxidative stress. In addition, OsMSRA4.1-overexpressing transgenic rice plants also showed enhanced viability under salt treatment. Our results provide genetic evidence of the involvement of OsMSRs in the plant stress responses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700