Chern–Simons theory in SIM(1) superspace
详细信息    查看全文
  • 作者:Ji?í Vohánka ; Mir Faizal
  • 刊名:The European Physical Journal C - Particles and Fields
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:75
  • 期:12
  • 全文大小:609 KB
  • 参考文献:1.S.S. Chern, J. Simons, Characteristic forms and geometric invariants. Ann. Math. 99, 48 (1974)CrossRef MathSciNet
    2.E. Witten, Topological quantum field theory. Commun. Math. Phys. 117, 353 (1988)CrossRef ADS
    3.M. Greiter, Microscopic formulation of the hierarchy of quantized Hall states. Phys. Lett. B 336, 48 (1994)CrossRef ADS MathSciNet
    4.R. de Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bunin, D. Mahalu, Direct observation of a fractional charge. Nature 389, 162 (1997)CrossRef ADS
    5.G.Y. Cho, Y. You, E. Fradkin, Geometry of fractional quantum Hall fluids. Phys. Rev. B 90, 115139 (2014). arXiv:-406.-700 [cond-mat.str-el]
    6.V.J. Goldman, B. Su, Resonant tunneling in quantum Hall effect: measurement of fractional charge. Science 267, 1010 (1995)CrossRef ADS
    7.M. Dierigl, A. Pritzel, Topological model for domain walls in (super-)Yang–Mills theories. Phys. Rev. D 90(10), 105008 (2014). arXiv:-405.-291 [hep-th]
    8.K. Hasebe, Supersymmetric quantum Hall effect on fuzzy supersphere. Phys. Rev. Lett. 94, 206802 (2005). arXiv:?hep-th/-411137 CrossRef ADS
    9.J. Garcia-Bellido, M. Garcia-Perez, A. Gonzalez-Arroyo, Chern-Simons production during preheating in hybrid inflation models. Phys. Rev. D 69, 023504 (2004). arXiv:?hep-ph/-304285
    10.K. Bamba, C.Q. Geng, S.H. Ho, Large-scale magnetic fields from inflation due to Chern–Simons-like effective interaction. JCAP 0811, 013 (2008). arXiv:-806.-856 [astro-ph]CrossRef ADS
    11.J. Smit, A. Tranberg, Chern–Simons number asymmetry from CP violation at electroweak tachyonic preheating. JHEP 0212, 020 (2002). arXiv:?hep-ph/-211243
    12.T. Konstandin, G. Servant, Natural cold baryogenesis from strongly interacting electroweak symmetry breaking. JCAP 1107, 024 (2011). arXiv:-104.-793 [hep-ph]CrossRef ADS
    13.E. Martinec, P. Adshead, M. Wyman, Chern–Simons EM-flation. JHEP 1302, 027 (2013). arXiv:-206.-889 [hep-th]CrossRef ADS MathSciNet
    14.A. Gustavsson, JHEP 0804, 083 (2008). arXiv:-802.-456 [hep-th]CrossRef ADS MathSciNet
    15.J. Bagger, N. Lambert, Comments on multiple M2
    anes. JHEP 0802, 105 (2008). arXiv:-712.-738 [hep-th]CrossRef ADS MathSciNet
    16.J. Bagger, N. Lambert, Gauge symmetry and supersymmetry of multiple M2
    anes. Phys. Rev. D 77, 065008 (2008). arXiv:-711.-955 [hep-th]CrossRef ADS MathSciNet
    17.M.A. Bandres, A.E. Lipstein, J.H. Schwarz, Studies of the ABJM theory in a formulation with manifest SU(4) R-symmetry. JHEP 0809, 027 (2008). arXiv:-807.-880 [hep-th]CrossRef ADS MathSciNet
    18.E. Antonyan, A.A. Tseytlin, On 3d N = 8 Lorentzian BLG theory as a scaling limit of 3d superconformal N = 6 ABJM theory. Phys. Rev. D 79, 046002 (2009). arXiv:-811.-540 [hep-th]
    19.O. Aharony, O. Bergman, D.L. Jafferis, J. Maldacena, N = 6 superconformal Chern–Simons-matter theories, M2
    anes and their gravity duals. JHEP 0810, 091 (2008). arXiv:-806.-218 [hep-th]
    20.M. Faizal, M-theory on deformed superspace. Phys. Rev. D 84, 106011 (2011). arXiv:-111.-213 [hep-th]CrossRef ADS
    21.A. Mohammed, J. Murugan, H. Nastase, Looking for a matrix model of ABJM. Phys. Rev. D 82, 086004 (2010). arXiv:-003.-599 [hep-th]CrossRef ADS
    22.D. Bak, S. Yun, Thermal aspects of ABJM theory: currents and condensations. Class. Quantum Gravity 27, 215011 (2010). arXiv:-001.-089 [hep-th]CrossRef ADS MathSciNet
    23.M. Naghdi, A monopole instanton-like effect in the ABJM model. Int. J. Mod. Phys. A 26, 3259 (2011). arXiv:-106.-907 [hep-th]CrossRef ADS MathSciNet
    24.O.K. Kwon, P. Oh, J. Sohn, Notes on supersymmetry enhancement of ABJM theory. JHEP 0908, 093 (2009). arXiv:-906.-333 [hep-th]CrossRef ADS MathSciNet
    25.A. Gustavsson, Monopoles, three-algebras and ABJM theories with \({\cal N}\) = 5,6,8 supersymmetry. JHEP 1101, 037 (2011). arXiv:-012.-568 [hep-th]
    26.A. Brini, Open topological strings and integrable hierarchies: remodeling the A-model. Commun. Math. Phys. 312, 735 (2012). arXiv:-102.-281 [hep-th]CrossRef ADS MathSciNet
    27.S. Hyun, K. Oh, J.D. Park, S.H. Yi, Topological B-model and c=1 string theory. Nucl. Phys. B 729, 135 (2005). arXiv:?hep-th/-502075 CrossRef ADS MathSciNet
    28.Y. Kim, O.K. Kwon, H. Nakajima, D.D. Tolla, Interaction between M2
    anes and bulk form fields. JHEP 1011, 069 (2010). arXiv:-009.-209 [hep-th]ADS MathSciNet
    29.Y. Kim, O.K. Kwon, H. Nakajima, D.D. Tolla, Coupling between M2
    anes and form fields. JHEP 0910, 022 (2009). arXiv:-905.-840 [hep-th]CrossRef ADS MathSciNet
    30.M.R. Douglas, N.A. Nekrasov, Noncommutative field theory. Rev. Mod. Phys. 73, 977 (2001). arXiv:?hep-th/-106048 CrossRef ADS MathSciNet
    31.P.M. Ho, Y.T. Yeh, Noncommutative D
    ane in nonconstant NS NS B field background. Phys. Rev. Lett. 85, 5523 (2000). arXiv:?hep-th/-005159 CrossRef ADS MathSciNet
    32.N. Seiberg, E. Witten, String theory and noncommutative geometry. JHEP 9909, 032 (1999). arXiv:?hep-th/-908142 CrossRef ADS MathSci
  • 作者单位:Ji?í Vohánka (1)
    Mir Faizal (2)

    1. Department of Theoretical Physics and Astrophysics, Masaryk University, Kotlá?ská 267/2, 611 37, Brno, Czech Republic
    2. Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Elementary Particles and Quantum Field Theory
    Nuclear Physics, Heavy Ions and Hadrons
    Physics beyond the Standard Model
    Measurement Science and Instrumentation
    Astronomy, Astrophysics and Cosmology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1434-6052
文摘
In this paper, we will analyze a three-dimensional supersymmetric Chern–Simons theory in SIM(1) superspace formalism. The breaking of the Lorentz symmetry down to the SIM(1) symmetry breaks half the supersymmetry of the Lorentz invariant theory. So, the supersymmetry of the Lorentz invariant Chern–Simons theory with \({\mathcal {N}} =1\) supersymmetry will break down to \({\mathcal {N}}=1/2\) supersymmetry, when the Lorentz symmetry is broken down to the SIM(1) symmetry. First, we will write the Chern–Simons action using SIM(1) projections of \({\mathcal {N}} =1\) superfields. However, as the SIM(1) transformations of these projections are very complicated, we will define SIM(1) superfields which transform simply under SIM(1) transformations. We will then express the Chern–Simons action using these SIM(1) superfields. Furthermore, we will analyze the gauge symmetry of this Chern–Simons theory. This is the first time that a Chern–Simons theory with \({\mathcal {N}} =1/2\) supersymmetry will be constructed on a manifold without a boundary.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700