Sampled ensemble neutrality as a feature to classify potential structured RNAs
详细信息    查看全文
  • 作者:Shermin Pei (1)
    Jon S Anthony (1)
    Michelle M Meyer (1)

    1. Boston College
    ; 140 Commonwealth Ave. ; Chestnut Hill ; 02467 ; MA ; USA
  • 关键词:RNA structural robustness ; RNA de novo discovery ; RNA structural ensemble ; Mutational robustness
  • 刊名:BMC Genomics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:892 KB
  • 参考文献:1. Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014; 157(1):77鈥?4. CrossRef
    2. Eddy SR. Non-coding RNA genes and the modern RNA world. Nat Rev Genet. 2001; 2:919鈥?9. CrossRef
    3. Halvorsen M, Martin JS, Broadaway S, Laederach A. Disease-associated mutations that alter the RNA structural ensemble. PLoS Genet. 2010; 6(8):11. CrossRef
    4. Schuster P, Fontana W, Stadler PF, Hofacker IL. From sequences to shapes and back: a case study in RNA secondary structures. Proc Biol Sci/R Soc. 1994; 255(1344):279鈥?84. CrossRef
    5. Salari R, Kimchi-Sarfaty C, Gottesman MM, Przytycka TM. Sensitive measurement of single-nucleotide polymorphism-induced changes of RNA conformation: application to disease studies. Nucleic Acids Res. 2013; 41(1):44鈥?3. doi:10.1093/nar/gks1009. CrossRef
    6. Gutell RR, Larsen N, Woese CR. Lessons from an evolving rRNA: 16s and 23s rRNA structures from a comparative perspective. Microbiol Rev. 1994; 58:10鈥?6.
    7. Fox GE, Woese CR. The architecture of 5s rRNA and its relation to function. J Mol Evol. 1975; 6:61鈥?6. CrossRef
    8. Gongadze GM. 5s rRNA and ribosome. Biochemistry. 2011; 76:1450鈥?4.
    9. Gutell RR, Power A, Hertz GZ, Putz EJ, Stormo GD. Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. Nucleic Acid Res. 1992; 20:5785鈥?5. CrossRef
    10. Parsch J, Braverman JM, Stephan W. Comparative sequence analysis and patterns of covariation in RNA secondary structures. Genetics. 2000; 154(2):909鈥?1.
    11. Gorodkin J, Hofacker IL, Torarinsson E, Yao Z, Havgaard JH, Ruzzo WL. De novo prediction of structured RNAs from genomic sequences. Trends Biotechnol. 2010; 28(1):9鈥?9. doi:10.1016/j.tibtech.2009.09.006. CrossRef
    12. Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS. Riboswitches: the oldest mechanism for the regulation of gene expression?Trends Genet. 2004; 20:44鈥?0. CrossRef
    13. Siegel RW, Banta AB, Haas ES, Brown JW, Pace NR. Mycoplasma fermentans simplifies our view of the catalytic core of ribonuclease P RNA. RNA. 1996; 2:452鈥?62.
    14. Kazantsev AV, Pace NR. Bacterial RNase P: a new view of an ancient enzyme. Nat Rev Microbiol. 2006; 4(10):729鈥?0. CrossRef
    15. Meyer IM. A practical guide to the art of RNA gene prediction. Brief Bioinform. 2007; 8(6):396鈥?14. doi:10.1093/bib/bbm011. CrossRef
    16. Rivas E, Eddy SR. Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinformatics. 2001; 2(1):8. CrossRef
    17. Washietl S, Hofacker IL, Stadler PF. Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci U S A. 2005; 102(7):2454鈥?. CrossRef
    18. Yao Z, Weinberg Z, Ruzzo WL. Cmfinder鈥揳 covariance model based RNA motif finding algorithm. Bioinformatics (Oxford, England). 2006; 22(4):445鈥?2. CrossRef
    19. Xu X, Ji Y, Stormo GD. Discovering cis-regulatory RNAs in shewanella genomes by support vector machines. PLoS Comput Biol. 2009; 5(4):1000338. doi:10.1371/journal.pcbi.1000338. CrossRef
    20. Rivas E, Eddy SR. Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs. Bioinformatics. 2000; 16(7):583鈥?05. CrossRef
    21. Clote P, Kranakis E. Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency. RNA. 2005; 11:578鈥?91. CrossRef
    22. Seffens W, Digby D. mRNAs have greater negative folding free energies than shuffled or codon choice randomized sequences. Nucleic Acids Res. 1999; 27(7):1578鈥?4. CrossRef
    23. Gorodkin J, Heyer LJ, Stormo GD. Finding the most significant common sequence and structure motifs in a set of RNA sequences. Nucleic Acids Res. 1997; 25:3724鈥?2. CrossRef
    24. Meyers LA, Lee JF, Cowperthwaite M, Ellington AD. The robustness of naturally and artificially selected nucleic acid secondary structures. J Mol Evol. 2004; 58(6):681鈥?1. doi:10.1007/s00239-004-2590-2. CrossRef
    25. Huynen MA, Stadler PF, Fontana W. Smoothness within ruggedness: the role of neutrality in adaptation. Proc Natl Acad Sci U S A. 1996; 93(1):397鈥?01. CrossRef
    26. Sanjuan R, Forment J, Elena SF. In silico predicted robustness of viroid RNA secondary structures. ii. interaction between mutation pairs. Mol Biol Evol. 2006; 23(11):2123鈥?0. CrossRef
    27. Gruner W, Giegerich R, Strothmann D, Reidys C, Weber J, Hofacker IL, et al. Analysis of RNA sequence structure maps by exhaustive enumeration i. neutral networks. Monatshefte f眉r Chemie Chem Mon. 1996; 127(4):355鈥?4. CrossRef
    28. Van Nimwegen E, Crutchfield JP, Huynen M. Neutral evolution of mutational robustness. PProc Natl Acad Sci. 1999; 96(17):9716鈥?0. CrossRef
    29. Borenstein E, Ruppin E. Direct evolution of genetic robustness in microRNA. PProc Natl Acad Sci U S A. 2006; 103(17):6593鈥?8. CrossRef
    30. Churkin A, Cohen M, Shemer-Avni Y, Barash D. Bioinformatic analysis of the neutrality of RNA secondary structure elements across genotypes reveals evidence for direct evolution of genetic robustness in hcv. J Bioinform Comput Biol. 2010; 08(06):1013鈥?6. CrossRef
    31. Rodrigo G, Fares Ma. Describing the structural robustness landscape of bacterial small RNAs. BMC Evol Biol. 2012; 12(1):52. CrossRef
    32. Rodrigo G, Elena SF. MicroRNA precursors are not structurally robust but plastic. Genome Biol Evol. 2013; 5(1):181鈥?. CrossRef
    33. Gruber AR, Bernhart SH, Hofacker IL, Washietl S. Strategies for measuring evolutionary conservation of RNA secondary structures. BMC Bioinformatics. 2008; 9:122. CrossRef
    34. Churkin A, Barash D. RNAmute: RNA secondary structure mutation analysis tool. BMC Bioinformatics. 2006; 7:221. CrossRef
    35. Shu W, Bo X, Liu R, Zhao D, Zheng Z, Wang S. Rdmas: a web server for RNA deleterious mutation analysis. BMC Bioinformatics. 2006; 7:404. CrossRef
    36. Waldispuhl J, Devadas S, Berger B, Clote P. Efficient algorithms for probing the RNA mutation landscape. PLoS computational biology. 2008; 4(8):1000124. doi:10.1371/journal.pcbi.1000124. CrossRef
    37. Sabarinathan R, Tafer H, Seemann SE, Hofacker IL, Stadler PF, Gorodkin J. RNAsnp: efficient detection of local RNA secondary structure changes induced by snps. Hum Mutat. 2013; 34(4):546鈥?6.
    38. Kiryu H, Asai K. Rchange: algorithms for computing energy changes of RNA secondary structures in response to base mutations. Bioinformatics. 2012; 28(8):1093鈥?01. CrossRef
    39. Shu W, Bo X, Zheng Z, Wang S. RSRE: RNA structural robustness evaluator. Nucleic Acids Res. 2007; 35((Web Server issue)):314鈥?. doi:10.1093/nar/gkm361. CrossRef
    40. Ritz J, Martin JS, Laederach A. Evaluating our ability to predict the structural disruption of RNA by SNPs. BMC Genomics. 2012; 13(Suppl 4):6. CrossRef
    41. Notredame C. Recent evolutions of multiple sequence alignment algorithms. PLoS Comput Biol. 2007; 3(8):4. CrossRef
    42. Wuchty S, Fontana W, Hofacker IL, Schuster P. Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers. 1999; 49:145鈥?5. CrossRef
    43. Menzel P, Gorodkin JAN, Stadler PF. The tedious task of finding homologous noncoding RNA genes. RNA. 2009; 15:2075鈥?082. doi:10.1261/rna.1556009. CrossRef
    44. Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, et al. Rfam 11.0: 10 years of RNA families. Nucleic Acids Res. 2013; 41:226鈥?2. CrossRef
    45. Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler PF. RNAalifold: improved consensus structure prediction for RNA alignments. BMC bioinformatics. 2008; 9:474. CrossRef
    46. Gesell T, Washietl S. Dinucleotide controlled null models for comparative RNA gene prediction. BMC Bioinformatics. 2008; 9:248. CrossRef
    47. Tabei Y, Kiryu H, Kin T, Asai K. A fast structural multiple alignment method for long RNA sequences. BMC Bioinformatics. 2008; 9:33. CrossRef
    48. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P. Fast folding and comparison of RNA secondary structures. Chem Mon. 1994; 125(2):167鈥?8. CrossRef
    49. Szollosi GJ, Derenyi I. Congruent evolution of genetic and environmental robustness in micro-RNA. Mol Biol Evol. 2009; 26(4):867鈥?4. CrossRef
    50. Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol (TIST). 2011; 2(3):27.
    51. Churkin A, Barash D. An efficient method for the prediction of deleterious multiple-point mutations in the secondary structure of RNAs using suboptimal folding solutions. BMC Bioinformatics. 2008; 9(1):222. doi:10.1186/1471-2105-9-222. CrossRef
    52. Cordero P, Lucks JB, Das R. An RNA mapping database for curating RNA structure mapping experiments. Bioinformatics (Oxford, England). 2012; 28:3006鈥?. CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Structured RNAs have many biological functions ranging from catalysis of chemical reactions to gene regulation. Yet, many homologous structured RNAs display most of their conservation at the secondary or tertiary structure level. As a result, strategies for structured RNA discovery rely heavily on identification of sequences sharing a common stable secondary structure. However, correctly distinguishing structured RNAs from surrounding genomic sequence remains challenging, especially during de novo discovery. RNA also has a long history as a computational model for evolution due to the direct link between genotype (sequence) and phenotype (structure). From these studies it is clear that evolved RNA structures, like protein structures, can be considered robust to point mutations. In this context, an RNA sequence is considered robust if its neutrality (extent to which single mutant neighbors maintain the same secondary structure) is greater than that expected for an artificial sequence with the same minimum free energy structure. Results In this work, we bring concepts from evolutionary biology to bear on the structured RNA de novo discovery process. We hypothesize that alignments corresponding to structured RNAs should consist of neutral sequences. We evaluate several measures of neutrality for their ability to distinguish between alignments of structured RNA sequences drawn from Rfam and various decoy alignments. We also introduce a new measure of RNA structural neutrality, the structure ensemble neutrality (SEN). SEN seeks to increase the biological relevance of existing neutrality measures in two ways. First, it uses information from an alignment of homologous sequences to identify a conserved biologically relevant structure for comparison. Second, it only counts base-pairs of the original structure that are absent in the comparison structure and does not penalize the formation of additional base-pairs. Conclusion We find that several measures of neutrality are effective at separating structured RNAs from decoy sequences, including both shuffled alignments and flanking genomic sequence. Furthermore, as an independent feature classifier to identify structured RNAs, SEN yields comparable performance to current approaches that consider a variety of features including stability and sequence identity. Finally, SEN outperforms other measures of neutrality at detecting mutational robustness in bacterial regulatory RNA structures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700