Whole genome profiling of spontaneous and chemically induced mutations in Toxoplasma gondii
详细信息    查看全文
  • 作者:Andrew Farrell (8)
    Bradley I Coleman (8)
    Brian Benenati (8)
    Kevin M Brown (10) (9)
    Ira J Blader (11) (9)
    Gabor T Marth (8)
    Marc-Jan Gubbels (8)

    8. Department of Biology
    ; Boston College ; Higgins Hall 355 ; 140 Commonwealth Avenue ; Chestnut Hill ; MA ; 02467 ; USA
    10. Department of Molecular Microbiology
    ; Washington University School of Medicine ; MPRB 9230 ; 4940 Parkview Place ; St. Louis ; MO ; 63110 ; USA
    9. Department of Microbiology and Immunology
    ; University of Oklahoma Health Sciences Center ; 940 Stanton L. Young Blvd. ; BMSB 1053 ; Oklahoma City ; OK ; 73104 ; USA
    11. Department of Microbiology and Immunology
    ; State University of New York ; 138 Farber Hall ; 3435 Main Street ; Buffalo ; NY ; 14214 ; USA
  • 关键词:Whole genome sequencing ; Chemical mutagenesis ; In vitro adaptation ; SNV calling ; Apicomplexa
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:1,214 KB
  • 参考文献:1. White, NJ, Pukrittayakamee, S, Hien, TT, Faiz, MA, Mokuolu, OA, Dondorp, AM (2013) Malaria. Lancet 383: pp. 723-735 CrossRef
    2. Montoya, JG, Liesenfeld, O (2004) Toxoplasmosis. Lancet 363: pp. 1965-1976 CrossRef
    3. Kim, K, Weiss, LM (2004) Toxoplasma gondii: the model apicomplexan. Int J Parasitol 34: pp. 423-432 CrossRef
    4. Pfefferkorn, ER, Pfefferkorn, LC (1976) Arabinosyl nucleosides inhibit Toxoplasma gondii and allow the selection of resistant mutants. J Parasitol 62: pp. 993-999 CrossRef
    5. Pfefferkorn, ER, Pfefferkorn, LC (1976) Toxoplasma gondii: isolation and preliminary characterization of temperature-sensitive mutants. Exp Parasitol 39: pp. 365-376 CrossRef
    6. Pfefferkorn, ER, Schwartzman, JD, Kasper, LH (1983) Toxoplasma gondii: use of mutants to study the host-parasite relationship. Ciba Found Symp 99: pp. 74-91
    7. Farrell, A, Thirugnanam, S, Lorestani, A, Dvorin, JD, Eidell, KP, Ferguson, DJ, Anderson-White, BR, Duraisingh, MT, Marth, GT, Gubbels, MJ (2012) A DOC2 protein identified by mutational profiling is essential for apicomplexan parasite exocytosis. Science 335: pp. 218-221 CrossRef
    8. Gubbels, MJ, Lehmann, M, Muthalagi, M, Jerome, ME, Brooks, CF, Szatanek, T, Flynn, J, Parrot, B, Radke, J, Striepen, B, White, MW (2008) Forward genetic analysis of the apicomplexan cell division cycle in Toxoplasma gondii. PLoS Pathog 4: pp. e36 CrossRef
    9. White, MW, Jerome, ME, Vaishnava, S, Guerini, M, Behnke, M, Striepen, B (2005) Genetic rescue of a Toxoplasma gondii conditional cell cycle mutant. Mol Microbiol 55: pp. 1060-1071 CrossRef
    10. Pfefferkorn, ER, Pfefferkorn, LC (1977) Toxoplasma gondii: characterization of a mutant resistant to 5-fluorodeoxyuridine. Exp Parasitol 42: pp. 44-55 CrossRef
    11. Black, MW, Arrizabalaga, G, Boothroyd, JC (2000) Ionophore-resistant mutants of Toxoplasma gondii reveal host cell permeabilization as an early event in egress. Mol Cell Biol 20: pp. 9399-9408 CrossRef
    12. Arrizabalaga, G, Ruiz, F, Moreno, S, Boothroyd, JC (2004) Ionophore-resistant mutant of Toxoplasma gondii reveals involvement of a sodium/hydrogen exchanger in calcium regulation. J Cell Biol 165: pp. 653-662 CrossRef
    13. Garrison, E, Treeck, M, Ehret, E, Butz, H, Garbuz, T, Oswald, BP, Settles, M, Boothroyd, J, Arrizabalaga, G (2012) A forward genetic screen reveals that calcium-dependent protein kinase 3 regulates egress in Toxoplasma. PLoS Pathog 8: pp. e1003049 CrossRef
    14. Uyetake, L, Ortega-Barria, E, Boothroyd, JC (2001) Isolation and characterization of a cold-sensitive attachment/invasion mutant of Toxoplasma gondii. Exp Parasitol 97: pp. 55-59 CrossRef
    15. Pfefferkorn, ER, Pfefferkorn, LC (1979) Quantitative studies of the mutagenesis of Toxoplasma gondii. J Parasitol 65: pp. 364-370 CrossRef
    16. Sikora, P, Chawade, A, Larsson, M, Olsson, J, Olsson, O (2011) Mutagenesis as a Tool in Plant Genetics, Functional Genomics, and Breeding. Int J Plant Genomics. pp. 13
    17. Anderson, P (1995) Mutagenesis. Methods Cell Biol 48: pp. 31-58 CrossRef
    18. Flibotte, S, Edgley, ML, Chaudhry, I, Taylor, J, Neil, SE, Rogula, A, Zapf, R, Hirst, M, Butterfield, Y, Jones, SJ, Marra, MA, Barstead, RJ, Moerman, DG (2010) Whole-genome profiling of mutagenesis in Caenorhabditis elegans. Genetics 185: pp. 431-441 CrossRef
    19. Acevedo-Arozena, A, Wells, S, Potter, P, Kelly, M, Cox, RD, Brown, SD (2008) ENU mutagenesis, a way forward to understand gene function. Annu Rev Genomics Hum Genet 9: pp. 49-69 CrossRef
    20. Amsterdam, A, Hopkins, N (2006) Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trends Genet 22: pp. 473-478 CrossRef
    21. Barbaric, I, Wells, S, Russ, A, Dear, TN (2007) Spectrum of ENU-induced mutations in phenotype-driven and gene-driven screens in the mouse. Environ Mol Mutagen 48: pp. 124-142 CrossRef
    22. Greene, EA, Codomo, CA, Taylor, NE, Henikoff, JG, Till, BJ, Reynolds, SH, Enns, LC, Burtner, C, Johnson, JE, Odden, AR, Comai, L, Henikoff, S (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164: pp. 731-740
    23. Hanash, SM, Boehnke, M, Chu, EH, Neel, JV, Kuick, RD (1988) Nonrandom distribution of structural mutants in ethylnitrosourea-treated cultured human lymphoblastoid cells. Proc Natl Acad Sci U S A 85: pp. 165-169 CrossRef
    24. Hillier, LW, Marth, GT, Quinlan, AR, Dooling, D, Fewell, G, Barnett, D, Fox, P, Glasscock, JI, Hickenbotham, M, Huang, W, Magrini, VJ, Richt, RJ, Sander, SN, Stewart, DA, Stromberg, M, Tsung, EF, Wylie, T, Schedl, T, Wilson, RK, Mardis, ER (2008) Whole-genome sequencing and variant discovery in C. elegans. Nat Methods 5: pp. 183-188 CrossRef
    25. Smith, DR, Quinlan, AR, Peckham, HE, Makowsky, K, Tao, W, Woolf, B, Shen, L, Donahue, WF, Tusneem, N, Stromberg, MP, Stewart, DA, Zhang, L, Ranade, SS, Warner, JB, Lee, CC, Coleman, BE, Zhang, Z, McLaughlin, SF, Malek, JA, Sorenson, JM, Blanchard, AP, Chapman, J, Hillman, D, Chen, F, Rokhsar, DS, McKernan, KJ, Jeffries, TW, Marth, GT, Richardson, PM (2008) Rapid whole-genome mutational profiling using next-generation sequencing technologies. Genome Res 18: pp. 1638-1642 CrossRef
    26. Sarin, S, Prabhu, S, O'Meara, MM, Pe'er, I, Hobert, O (2008) Caenorhabditis elegans mutant allele identification by whole-genome sequencing. Nat Methods 5: pp. 865-867 CrossRef
    27. Shen, Y, Sarin, S, Liu, Y, Hobert, O, Pe'er, I (2008) Comparing platforms for C. elegans mutant identification using high-throughput whole-genome sequencing. PLoS One 3: pp. e4012 CrossRef
    28. Sarin, S, Bertrand, V, Bigelow, H, Boyanov, A, Doitsidou, M, Poole, RJ, Narula, S, Hobert, O (2010) Analysis of multiple ethyl methanesulfonate-mutagenized Caenorhabditis elegans strains by whole-genome sequencing. Genetics 185: pp. 417-430 CrossRef
    29. Zuryn, S, Le Gras, S, Jamet, K, Jarriault, S (2010) A strategy for direct mapping and identification of mutations by whole-genome sequencing. Genetics 186: pp. 427-430 CrossRef
    30. Voz, ML, Coppieters, W, Manfroid, I, Baudhuin, A, Von Berg, V, Charlier, C, Meyer, D, Driever, W, Martial, JA, Peers, B (2012) Fast homozygosity mapping and identification of a zebrafish ENU-induced mutation by whole-genome sequencing. PLoS One 7: pp. e34671 CrossRef
    31. Shiwa, Y, Fukushima-Tanaka, S, Kasahara, K, Horiuchi, T, Yoshikawa, H (2012) Whole-Genome Profiling of a Novel Mutagenesis Technique Using Proofreading-Deficient DNA Polymerase delta. Int J Evol Biol 2012: pp. 860797 CrossRef
    32. Hobert, O (2010) The impact of whole genome sequencing on model system genetics: get ready for the ride. Genetics 184: pp. 317-319 CrossRef
    33. Brown, KM, Suvorova, ES, Farrell, A, Wiley, GB, Gubbels, MJ, Marth, GT, Gaffney, PM, White, M, Blader, IJ (2014) Chemical genetic screening identifies a small molecule that blocks Toxoplasma growth by inhibiting both host- and parasite-encoded kinases. PLoS Path.
    34. Sugi, T, Kobayashi, K, Takamea, H, Gong, H, Ishiwa, A (2013) Identification of mutations in TgMAPK1 of Toxoplasma gondii conferring the resistance to 1NM-PP1. Int J Parasitol Drugs Drug Resist 3: pp. 93-101 CrossRef
    35. Coleman, BI, Gubbels, MJ (2012) A genetic screen to isolate Toxoplasma gondii host cell egress mutants. J Vis Exp 60: pp. e3807
    36. Roos, DS, Donald, RG, Morrissette, NS, Moulton, AL (1994) Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol 45: pp. 27-63 CrossRef
    37. Sabin, AB (1941) Toxoplasmic encephalitis in children. J Am Med Assoc 116: pp. 801-807 CrossRef
    38. Donald, RG, Carter, D, Ullman, B, Roos, DS (1996) Insertional tagging, cloning, and expression of the Toxoplasma gondii hypoxanthine-xanthine-guanine phosphoribosyltransferase gene. Use as a selectable marker for stable transformation. J Biol Chem 271: pp. 14010-14019 CrossRef
    39. Dobrowolski, JM, Sibley, LD (1996) Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 84: pp. 933-939 CrossRef
    40. Teo, CF, Zhou, XW, Bogyo, M, Carruthers, VB (2007) Cysteine protease inhibitors block Toxoplasma gondii microneme secretion and cell invasion. Antimicrob Agents Chemother 51: pp. 679-688 CrossRef
    41. Gubbels, MJ, Li, C, Striepen, B (2003) High-throughput growth assay for Toxoplasma gondii using yellow fluorescent protein. Antimicrob Agents Chemother 47: pp. 309-316 CrossRef
    42. Eidell, KP, Burke, T, Gubbels, MJ (2010) Development of a screen to dissect Toxoplasma gondii egress. Mol Biochem Parasitol 171: pp. 97-103 CrossRef
    43. Carey, KL, Westwood, NJ, Mitchison, TJ, Ward, GE (2004) A small-molecule approach to studying invasive mechanisms of Toxoplasma gondii. Proc Natl Acad Sci U S A 101: pp. 7433-7438 CrossRef
    44. Lee, W-P, Stromberg, M, Ward, A, Stewart, C, Garrison, E, Marth, GT (2014) MOSAIK: A hash-based algorithm for accurate next-generation sequencing short-read mapping. PLoS One 9: pp. e90581 CrossRef
    45. Marth, GT, Korf, I, Yandell, MD, Yeh, RT, Gu, Z, Zakeri, H, Stitziel, NO, Hillier, L, Kwok, PY, Gish, WR (1999) A general approach to single-nucleotide polymorphism discovery. Nat Genet 23: pp. 452-456 CrossRef
    46. Garrison, E, Marth, GT (2012) Haplotype-Based Variant Detection from Short-Read Sequencing.
    47. Krzywinski, M, Schein, J, Birol, I, Connors, J, Gascoyne, R, Horsman, D, Jones, SJ, Marra, MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19: pp. 1639-1645 CrossRef
    48. Gajria, B, Bahl, A, Brestelli, J, Dommer, J, Fischer, S, Gao, X, Heiges, M, Iodice, J, Kissinger, JC, Mackey, AJ, Pinney, DF, Roos, DS, Stoeckert, CJ, Wang, H, Brunk, BP (2008) ToxoDB: an integrated Toxoplasma gondii database resource. Nucleic Acids Res 36: pp. D553-D556 CrossRef
    49. Sibley, LD, Boothroyd, JC (1992) Virulent strains of Toxoplasma gondii comprise a single clonal lineage. Nature 359: pp. 82-85 CrossRef
    50. Martinelli, A, Henriques, G, Cravo, P, Hunt, P (2010) Whole genome re-sequencing identifies a mutation in an ABC transporter (mdr2) in a Plasmodium chabaudi clone with altered susceptibility to antifolate drugs. Int J Parasitol 41: pp. 165-171 CrossRef
    51. Araya, CL, Payen, C, Dunham, MJ, Fields, S (2010) Whole-genome sequencing of a laboratory-evolved yeast strain. BMC Genomics 11: pp. 88 CrossRef
    52. Le Crom, S, Schackwitz, W, Pennacchio, L, Magnuson, JK, Culley, DE, Collett, JR, Martin, J, Druzhinina, IS, Mathis, H, Monot, F, Seiboth, B, Cherry, B, Rey, M, Berka, R, Kubicek, CP, Baker, SE, Margeot, A (2009) Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proc Natl Acad Sci U S A 106: pp. 16151-16156 CrossRef
    53. Yang, Z, Yoder, AD (1999) Estimation of the transition/transversion rate bias and species sampling. J Mol Evol 48: pp. 274-283 CrossRef
    54. Zhang, J (2000) Rates of conservative and radical nonsynonymous nucleotide substitutions in mammalian nuclear genes. J Mol Evol 50: pp. 56-68
    55. Khan, A, Taylor, S, Su, C, Sibley, LD, Paulsen, I, Ajioka, JW (2007) Genetics and Genome Organization of Toxoplasma Gondii. Horizon Scientific Press, Norwich, UK
    56. Pfefferkorn, ER (1978) Toxoplasma gondii: the enzymic defect of a mutant resistant to 5-fluorodeoxyuridine. Exp Parasitol 44: pp. 26-35 CrossRef
    57. Schwartzman, JD, Pfefferkorn, ER (1981) Pyrimidine synthesis by intracellular Toxoplasma gondii. J Parasitol 67: pp. 150-158 CrossRef
    58. Donald, RG, Roos, DS (1995) Insertional mutagenesis and marker rescue in a protozoan parasite: cloning of the uracil phosphoribosyltransferase locus from Toxoplasma gondii. Proc Natl Acad Sci U S A 92: pp. 5749-5753 CrossRef
    59. Goecks, J, Eberhard, C, Too, T, Nekrutenko, A, Taylor, J (2013) Web-based visual analysis for high-throughput genomics. BMC Genomics 14: pp. 397 CrossRef
    60. Sun, YV, Levin, AM, Boerwinkle, E, Robertson, H, Kardia, SL (2006) A scan statistic for identifying chromosomal patterns of SNP association. Genet Epidemiol 30: pp. 627-635 CrossRef
    61. Yang, N, Farrell, A, Niedelman, W, Melo, M, Lu, D, Julien, L, Marth, GT, Gubbels, MJ, Saeij, JP (2013) Genetic basis for phenotypic differences between different Toxoplasma gondii type I strains. BMC Genomics 14: pp. 467 CrossRef
    62. Martincorena, I, Seshasayee, AS, Luscombe, NM (2012) Evidence of non-random mutation rates suggests an evolutionary risk management strategy. Nature 485: pp. 95-98 CrossRef
    63. Fox, BA, Ristuccia, JG, Gigley, JP, Bzik, DJ (2009) Efficient gene replacements in Toxoplasma gondii strains deficient for nonhomologous end-joining. Eukaryot Cell 8: pp. 520-529 CrossRef
    64. Nordstrom, KJ, Albani, MC, James, GV, Gutjahr, C, Hartwig, B, Turck, F, Paszkowski, U, Coupland, G, Schneeberger, K (2013) Mutation identification by direct comparison of whole-genome sequencing data from mutant and wild-type individuals using k-mers. Nat Biotechnol 31: pp. 325-330 CrossRef
    65. Kohler, S, Delwiche, CF, Denny, PW, Tilney, LG, Webster, P, Wilson, RJ, Palmer, JD, Roos, DS (1997) A plastid of probable green algal origin in Apicomplexan parasites. Science 275: pp. 1485-1489 CrossRef
    66. Reiff, SB, Vaishnava, S, Striepen, B (2012) The HU protein is important for apicoplast genome maintenance and inheritance in Toxoplasma gondii. Eukaryot Cell 11: pp. 905-915 CrossRef
    67. Matsuzaki, M, Kikuchi, T, Kita, K, Kojima, S, Kuroiwa, T (2001) Large amounts of apicoplast nucleoid DNA and its segregation in Toxoplasma gondii. Protoplasma 218: pp. 180-191 CrossRef
    68. Pastink, A, Heemskerk, E, Nivard, MJ, Van Vliet, CJ, Vogel, EW (1991) Mutational specificity of ethyl methanesulfonate in excision-repair-proficient and -deficient strains of Drosophila melanogaster. Mol Gen Genet 229: pp. 213-218 CrossRef
    69. Klungland, A, Laake, K, Hoff, E, Seeberg, E (1995) Spectrum of mutations induced by methyl and ethyl methanesulfonate at the hprt locus of normal and tag expressing Chinese hamster fibroblasts. Carcinogenesis 16: pp. 1281-1285 CrossRef
    70. Onyango, DO, Naguleswaran, A, Delaplane, S, Reed, A, Kelley, MR, Georgiadis, MM, Sullivan, WJ (2011) Base excision repair apurinic/apyrimidinic endonucleases in apicomplexan parasite Toxoplasma gondii. DNA Repair 10: pp. 466-475 CrossRef
    71. Quwailid, MM, Hugill, A, Dear, N, Vizor, L, Wells, S, Horner, E, Fuller, S, Weedon, J, McMath, H, Woodman, P, Edwards, D, Campbell, D, Rodger, S, Carey, J, Roberts, A, Glenister, P, Lalanne, Z, Parkinson, N, Coghill, EL, McKeone, R, Cox, S, Willan, J, Greenfield, A, Keays, D, Brady, S, Spurr, N, Gray, I, Hunter, J, Brown, SD, Cox, RD (2004) A gene-driven ENU-based approach to generating an allelic series in any gene. Mamm Genome 15: pp. 585-591 CrossRef
    72. Timmermann, B, Jarolim, S, Russmayer, H, Kerick, M, Michel, S, Kruger, A, Bluemlein, K, Laun, P, Grillari, J, Lehrach, H, Breitenbach, M, Ralser, M (2010) A new dominant peroxiredoxin allele identified by whole-genome re-sequencing of random mutagenized yeast causes oxidant-resistance and premature aging. Aging (Albany NY) 2: pp. 475-486
    73. Schumacher, MA, Carter, D, Scott, DM, Roos, DS, Ullman, B, Brennan, RG (1998) Crystal structures of Toxoplasma gondii uracil phosphoribosyltransferase reveal the atomic basis of pyrimidine discrimination and prodrug binding. EMBO J 17: pp. 3219-3232 CrossRef
    74. Longley, DB, Harkin, DP, Johnston, PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3: pp. 330-338 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Next generation sequencing is helping to overcome limitations in organisms less accessible to classical or reverse genetic methods by facilitating whole genome mutational analysis studies. One traditionally intractable group, the Apicomplexa, contains several important pathogenic protozoan parasites, including the Plasmodium species that cause malaria. Here we apply whole genome analysis methods to the relatively accessible model apicomplexan, Toxoplasma gondii, to optimize forward genetic methods for chemical mutagenesis using N-ethyl-N-nitrosourea (ENU) and ethylmethane sulfonate (EMS) at varying dosages. Results By comparing three different lab-strains we show that spontaneously generated mutations reflect genome composition, without nucleotide bias. However, the single nucleotide variations (SNVs) are not distributed randomly over the genome; most of these mutations reside either in non-coding sequence or are silent with respect to protein coding. This is in contrast to the random genomic distribution of mutations induced by chemical mutagenesis. Additionally, we report a genome wide transition vs transversion ratio (ti/tv) of 0.91 for spontaneous mutations in Toxoplasma, with a slightly higher rate of 1.20 and 1.06 for variants induced by ENU and EMS respectively. We also show that in the Toxoplasma system, surprisingly, both ENU and EMS have a proclivity for inducing mutations at A/T base pairs (78.6% and 69.6%, respectively). Conclusions The number of SNVs between related laboratory strains is relatively low and managed by purifying selection away from changes to amino acid sequence. From an experimental mutagenesis point of view, both ENU (24.7%) and EMS (29.1%) are more likely to generate variation within exons than would naturally accumulate over time in culture (19.1%), demonstrating the utility of these approaches for yielding proportionally greater changes to the amino acid sequence. These results will not only direct the methods of future chemical mutagenesis in Toxoplasma, but also aid in designing forward genetic approaches in less accessible pathogenic protozoa as well.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700