Evolution of holographic entanglement entropy in an anisotropic system
详细信息    查看全文
  • 作者:Christian Ecker ; Daniel Grumiller ; Stefan A. Stricker
  • 关键词:AdS ; CFT Correspondence ; Black Holes ; Holography and quark ; gluon plasmas
  • 刊名:Journal of High Energy Physics
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:2015
  • 期:7
  • 全文大小:833 KB
  • 参考文献:[1]D. Teaney, J. Lauret and E.V. Shuryak, Flow at the SPS and RHIC as a quark gluon plasma signature, Phys. Rev. Lett. 86 (2001) 4783 [nucl-th/鈥?011058 ] [INSPIRE ].ADS View Article
    [2]P. Huovinen, P.F. Kolb, U.W. Heinz, P.V. Ruuskanen and S.A. Voloshin, Radial and elliptic flow at RHIC: further predictions, Phys. Lett. B 503 (2001) 58 [hep-ph/鈥?101136 ] [INSPIRE ].ADS View Article
    [3]T. Hirano and K. Tsuda, Collective flow and two pion correlations from a relativistic hydrodynamic model with early chemical freezeout, Phys. Rev. C 66 (2002) 054905 [nucl-th/鈥?205043 ] [INSPIRE ].ADS
    [4]P. Romatschke and U. Romatschke, Viscosity Information from Relativistic Nuclear Collisions: How Perfect is the Fluid Observed at RHIC?, Phys. Rev. Lett. 99 (2007) 172301 [arXiv:鈥?706.鈥?522 ] [INSPIRE ].ADS View Article
    [5]A. Polkovnikov, K. Sengupta, A. Silva and M. Vengalattore, Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys. 83 (2011) 863 [arXiv:鈥?007.鈥?331 ] [INSPIRE ].ADS View Article
    [6]J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/鈥?711200 ] [INSPIRE ].MathSciNet View Article
    [7]E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/鈥?802150 ] [INSPIRE ].MathSciNet ADS
    [8]S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/鈥?802109 ] [INSPIRE ].MathSciNet ADS View Article
    [9]E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/鈥?803131 ] [INSPIRE ].MathSciNet
    [10]J. Eisert, M. Cramer and M.B. Plenio, Area laws for the entanglement entropy 鈥?a review, Rev. Mod. Phys. 82 (2010) 277 [arXiv:鈥?808.鈥?773 ] [INSPIRE ].MathSciNet ADS View Article
    [11]S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/鈥?603001 ] [INSPIRE ].MathSciNet ADS View Article
    [12]T. Nishioka, S. Ryu and T. Takayanagi, Holographic Entanglement Entropy: An Overview, J. Phys. A 42 (2009) 504008 [arXiv:鈥?905.鈥?932 ] [INSPIRE ].MathSciNet
    [13]V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:鈥?705.鈥?016 ] [INSPIRE ].MathSciNet ADS View Article
    [14]P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. (2004) P06002 [hep-th/鈥?405152 ] [INSPIRE ].
    [15]C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/鈥?403108 ] [INSPIRE ].MathSciNet ADS View Article
    [16]G. Vidal, J.I. Latorre, E. Rico and A. Kitaev, Entanglement in quantum critical phenomena, Phys. Rev. Lett. 90 (2003) 227902 [quant-ph/鈥?211074 ] [INSPIRE ].ADS View Article
    [17]A. Bagchi, R. Basu, D. Grumiller and M. Riegler, Entanglement entropy in Galilean conformal field theories and flat holography, Phys. Rev. Lett. 114 (2015) 111602 [arXiv:鈥?410.鈥?089 ] [INSPIRE ].ADS View Article
    [18]P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. (2005) P04010 [cond-mat/鈥?503393 ] [INSPIRE ].
    [19]J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic evolution of entanglement entropy, JHEP 11 (2010) 149 [arXiv:鈥?006.鈥?090 ] [INSPIRE ].ADS View Article
    [20]V. Balasubramanian et al., Holographic Thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:鈥?103.鈥?683 ] [INSPIRE ].ADS
    [21]T. Albash and C.V. Johnson, Evolution of Holographic Entanglement Entropy after Thermal and Electromagnetic Quenches, New J. Phys. 13 (2011) 045017 [arXiv:鈥?008.鈥?027 ] [INSPIRE ].ADS View Article
    [22]W. Baron, D. Galante and M. Schvellinger, Dynamics of holographic thermalization, JHEP 03 (2013) 070 [arXiv:鈥?212.鈥?234 ] [INSPIRE ].ADS View Article
    [23]D. Galante and M. Schvellinger, Thermalization with a chemical potential from AdS spaces, JHEP 07 (2012) 096 [arXiv:鈥?205.鈥?548 ] [INSPIRE ].ADS View Article
    [24]V. Keranen, E. Keski-Vakkuri and L. Thorlacius, Thermalization and entanglement following a non-relativistic holographic quench, Phys. Rev. D 85 (2012) 026005 [arXiv:鈥?110.鈥?035 ] [INSPIRE ].ADS
    [25]H. Liu and S.J. Suh, Entanglement growth during thermalization in holographic systems, Phys. Rev. D 89 (2014) 066012 [arXiv:鈥?311.鈥?200 ] [INSPIRE ].ADS
    [26]H. Liu and S.J. Suh, Entanglement Tsunami: Universal Scaling in Holographic Thermalization, Phys. Rev. Lett. 112 (2014) 011601 [arXiv:鈥?305.鈥?244 ] [INSPIRE ].ADS View Article
    [27]V. Keranen, H. Nishimura, S. Stricker, O. Taanila and A. Vuorinen, Dynamics of gravitational collapse and holographic entropy production, Phys. Rev. D 90 (2014) 064033 [arXiv:鈥?405.鈥?015 ] [INSPIRE ].ADS
    [28]V. Keranen, H. Nishimura, S. Stricker, O. Taanila and A. Vuorinen, Gravitational collapse of thin shells: time evolution of the holographic entanglement entropy, JHEP 06 (2015) 126 [arXiv:鈥?502.鈥?1277 ] [INSPIRE ].View Article
    [29]M. Alishahiha, A.F. Astaneh and M.R.M. Mozaffar, Thermalization in backgrounds with hyperscaling violating factor, Phys. Rev. D 90 (2014) 046004 [arXiv:鈥?401.鈥?807 ] [INSPIRE ].ADS
    [30]P. Fonda, L. Franti, V. Ker盲nen, E. Keski-Vakkuri, L. Thorlacius and E. Tonni, Holographic thermalization with Lifshitz scaling and hyperscaling violation, JHEP 08 (2014) 051 [arXiv:鈥?401.鈥?088 ] [INSPIRE ].ADS View Article
    [31]P. Bizon and A. Rostworowski, On weakly turbulent instability of anti-de Sitter space, Phys. Rev. Lett. 107 (2011) 031102 [arXiv:鈥?104.鈥?702 ] [INSPIRE ].ADS View Article
    [32]J. Abajo-Arrastia, E. da Silva, E. Lopez, J. Mas and A. Serantes, Holographic Relaxation of Finite Size Isolated Quantum Systems, JHEP 05 (2014) 126 [arXiv:鈥?403.鈥?632 ] [INSPIRE ].ADS View Article
    [33]A. Buchel, R.C. Myers and A. van Niekerk, Nonlocal probes of thermalization in holographic quenches with spectral methods, JHEP 02 (2015) 017 [arXiv:鈥?410.鈥?201 ] [INSPIRE ].ADS View Article
    [34]E. da Silva, E. Lopez, J. Mas and A. Serantes, Collapse and Revival in Holographic Quenches, JHEP 04 (2015) 038 [arXiv:鈥?412.鈥?002 ] [INSPIRE ].View Article
    [35]B. M眉ller and A. Schafer, Entropy Creation in Relativistic Heavy Ion Collisions, Int. J. Mod. Phys. E 20 (2011) 2235 [arXiv:鈥?110.鈥?378 ] [INSPIRE ].ADS View Article
    [36]K. Narayan, T. Takayanagi and S.P. Trivedi, AdS plane waves and entanglement entropy, JHEP 04 (2013) 051 [arXiv:鈥?212.鈥?328 ] [INSPIRE ].MathSciNet ADS View Article
    [37]P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:鈥?812.鈥?053 ] [INSPIRE ].MathSciNet ADS View Article
    [38]P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:鈥?906.鈥?426 ] [INSPIRE ].ADS
    [39]M.P. Heller, D. Mateos, W. van der Schee and D. Trancanelli, Strong Coupling Isotropization of Non-Abelian Plasmas Simplified, Phys. Rev. Lett. 108 (2012) 191601 [arXiv:鈥?202.鈥?981 ] [INSPIRE ].ADS View Article
    [40]M.P. Heller, D. Mateos, W. van der Schee and M. Triana, Holographic isotropization linearized, JHEP 09 (2013) 026 [arXiv:鈥?304.鈥?172 ] [INSPIRE ].ADS View Article
    [41]P.M. Chesler and L.G. Yaffe, Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes, JHEP 07 (2014) 086 [arXiv:鈥?309.鈥?439 ] [INSPIRE ].ADS View Article
    [42]M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/鈥?806087 ] [INSPIRE ].MathSciNet ADS View Article
    [43]S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/鈥?002230 ] [INSPIRE ].ADS View Article
    [44]V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev. D 61 (2000) 044007 [hep-th/鈥?906226 ] [INSPIRE ].MathSciNet ADS
    [45]G. Festuccia and H. Liu, Excursions beyond the horizon: black hole singularities in Yang-Mills theories. I, JHEP 04 (2006) 044 [hep-th/鈥?506202 ] [INSPIRE ].MathSciNet ADS View Article
    [46]V. Keranen and P. Kleinert, Non-equilibrium scalar two point functions in AdS/CFT, JHEP 04 (2015) 119 [arXiv:鈥?412.鈥?806 ] [INSPIRE ].ADS View Article
    [47]S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/鈥?605073 ] [INSPIRE ].MathSciNet ADS View Article
    [48]S.H. John W. Eaton, David Bateman and R. Wehbring, GNU Octave version 3.8.1 manual: a high-level interactive language for numerical computations, CreateSpace Independent Publishing Platform (2014).
    [49]W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes 3rd Edition: The Art of Scientific Computing, third edition, Cambridge University Press, New York U.S.A. (2007).
    [50]A.O. Starinets, Quasinormal modes of near extremal black branes, Phys. Rev. D 66 (2002) 124013 [hep-th/鈥?207133 ] [INSPIRE ].MathSciNet ADS
    [51]P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/鈥?506184 ] [INSPIRE ].ADS
    [52]D. Birmingham, I. Sachs and S.N. Solodukhin, Conformal field theory interpretation of black hole quasinormal modes, Phys. Rev. Lett. 88 (2002) 151301 [hep-th/鈥?112055 ] [INSPIRE ].MathSciNet ADS View Article
    [53]D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/鈥?205051 ] [INSPIRE ].MathSciNet ADS View Article
    [54]E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26 (2009) 163001 [arXiv:鈥?905.鈥?975 ] [INSPIRE ].MathSciNet ADS View Article
    [55]V. Balasubramanian, A. Bernamonti, B. Craps, V. Ker盲nen, E. Keski-Vakkuri et al., Thermalization of the spectral function in strongly coupled two dimensional conformal field theories, JHEP 04 (2013) 069 [arXiv:鈥?212.鈥?066 ] [INSPIRE ].ADS View Article
    [56]T. Ishii, E. Kiritsis and C. Rosen, Thermalization in a Holographic Confining Gauge Theory, arXiv:鈥?503.鈥?7766 [INSPIRE ].
    [57]J.R. David and S. Khetrapal, Thermalization of Green functions and quasinormal modes, arXiv:鈥?504.鈥?4439 [INSPIRE ].
    [58]J. Bhattacharya and T. Takayanagi, Entropic Counterpart of Perturbative Einstein Equation, JHEP 10 (2013) 219 [arXiv:鈥?308.鈥?792 ] [INSPIRE ].MathSciNet ADS View Article
    [59]W. Fischler and S. Kundu, Strongly Coupled Gauge Theories: High and Low Temperature Behavior of Non-local Observables, JHEP 05 (2013) 098 [arXiv:鈥?212.鈥?643 ] [INSPIRE ].MathSciNet ADS View Article
    [60]D. Grumiller and P. Romatschke, On the collision of two shock waves in AdS 5, JHEP 08 (2008) 027 [arXiv:鈥?803.鈥?226 ] [INSPIRE ].MathSciNet ADS View Article
    [61]S.S. Gubser, S.S. Pufu and A. Yarom, Entropy production in collisions of gravitational shock waves and of heavy ions, Phys. Rev. D 78 (2008) 066014 [arXiv:鈥?805.鈥?551 ] [INSPIRE ].ADS
    [62]P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:鈥?011.鈥?562 ] [INSPIRE ].ADS View Article
    [63]B. Wu and P. Romatschke, Shock wave collisions in AdS5: approximate numerical solutions, Int. J. Mod. Phys. C 22 (2011) 1317 [arXiv:鈥?108.鈥?715 ] [INSPIRE ].ADS View Article
    [64]J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, From full stopping to transparency in a holographic model of heavy ion collisions, Phys. Rev. Lett. 111 (2013) 181601 [arXiv:鈥?305.鈥?919 ] [INSPIRE ].ADS View Article
    [65]J. Boyd, Chebyshev and Fourier Spectral Methods: Second Revised Edition, Dover Books on Mathematics, Dover Publications, New York U.S.A. (2001).
    [66]L.N. Trefethen, Spectral Methods in MatLab, Society for Industrial and Applied Mathematics, Philadelphia U.S.A. (2000).
  • 作者单位:Christian Ecker (1)
    Daniel Grumiller (1)
    Stefan A. Stricker (1)

    1. Institut f眉r Theoretische Physik, Technische Universit盲t Wien, Wiedner Hauptstr. 8-10, A-1040, Vienna, Austria
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Elementary Particles and Quantum Field Theory
    Quantum Field Theories, String Theory
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1029-8479
文摘

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700