Recent Advance in Aromatic Volatile Research in Tomato Fruit: The Metabolisms and Regulations
详细信息    查看全文
  • 作者:Libin Wang ; Elizabeth A. Baldwin ; Jinhe Bai
  • 关键词:Solanum lycopersicum ; Volatile ; Biosynthetic pathway ; Ethylene ; Genetics ; Pre ; harvest ; Postharvest ; Ripening
  • 刊名:Food and Bioprocess Technology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:9
  • 期:2
  • 页码:203-216
  • 全文大小:509 KB
  • 参考文献:Alba, R., Payton, P., Fei, Z., McQuinn, R., Debbie, P., Martin, G. B., Tanksley, S. D., & Giovannoni, J. J. (2005). Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. The Plant Cell, 17(11), 2954–2965.CrossRef
    Alexander, L., & Grierson, D. (2002). Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. Journal of Experimental Botany, 53(377), 2039–2055.CrossRef
    Asghari, M., & Aghdam, M. S. (2010). Impact of salicylic acid on post-harvest physiology of horticultural crops. Trends in Food Science & Technology, 21(10), 502–509.CrossRef
    Bai, J., Baldwin, E. A., Imahori, Y., Kostenyuk, I., Burns, J., & Brecht, J. K. (2011). Chilling and heating may regulate C6 volatile aroma production by different mechanisms in tomato (Solanum lycopersicum) fruit. Postharvest Biology and Technology, 60(2), 111–120.CrossRef
    Baldwin, E., Goodner, K., & Plotto, A. (2008). Interaction of volatiles, sugars, and acids on perception of tomato aroma and flavor descriptors. Journal of Food Science, 73(6), S294–S307.CrossRef
    Baldwin, E., Nisperos-Carriedo, M., & Moshonas, M. (1991). Quantitative analysis of flavor and other volatiles and for certain constituents of two tomato cultivars during ripening. Journal of the American Society for Horticultural Science, 116(2), 265–269.
    Baldwin, E., Plotto, A., Narciso, J., & Bai, J. (2011). Effect of 1-methylcyclopropene on tomato flavour components, shelf life and decay as influenced by harvest maturity and storage temperature. Journal of the Science of Food and Agriculture, 91(6), 969–980.CrossRef
    Baldwin, E. A., Scott, J. W., & Bai, J. (2015). Sensory and chemical flavor analyses of tomato genotypes grown in Florida during three different growing seasons in multiple years. Journal of the American Society for Horticultural Science, 140(5), 490–503.
    Baldwin, E., Scott, J., & Shewfelt, R. (1995). Quality of ripened mutant and transgenic tomato cultigens. Proceedings of the Tomato Quality Workshop and Tomato Breeders Roundtable, 503, 47–57.
    Baldwin, E. A., Scott, J. W., Shewmaker, C. K., & Schuch, W. (2000). Flavor trivia and tomato aroma: biochemistry and possible mechanisms for control of important aroma components. Hortscience, 35(6), 1013–1022.
    Barry, C. S., Llop-Tous, M. I., & Grierson, D. (2000). The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiology, 123(3), 979–986.CrossRef
    Boukobza, F., & Taylor, A. J. (2002). Effect of postharvest treatment on flavour volatiles of tomatoes. Postharvest Biology and Technology, 25(3), 321–331.CrossRef
    Burbidge, A., Grieve, T., Jackson, A., Thompson, A., & Taylor, I. (1997). Structure and expression of a cDNA encoding a putative neoxanthin cleavage enzyme (NCE), isolated from a wilt-related tomato (Lycopersicon esculentum mill.) library. Journal of Experimental Botany, 48(12), 2111–2112.CrossRef
    Buttery, R. (1993). Quantitative and sensory aspects of flavor of tomato and other vegetables and fruits. In T. Acree, & R. Teranishi (Eds.), Flavor science: sensible principles and techniques (pp. 259–286). Washington: American Chemical Society.
    Cebolla-Cornejo, J., Roselló, S., Valcárcel, M., Serrano, E., Beltrán, J., & Nuez, F. (2011). Evaluation of genotype and environment effects on taste and aroma flavor components of Spanish fresh tomato varieties. Journal of Agricultural and Food Chemistry, 59(6), 2440–2450.CrossRef
    Chen, G., Hackett, R., Walker, D., Taylor, A., Lin, Z., & Grierson, D. (2004). Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiology, 136(1), 2641–2651.CrossRef
    Crouzet, J., Signoret, A., Coulibaly, J., & Roudsari, M. H. (1985). Influence of controlled atmosphere storage on tomato volatile components. In G. Charalambous (Ed.), The shelf life of foods and beverages (pp. 355–367). Amsterdam: Elsevier Science Publishers.
    Dalal, K., Olson, L., Yu, M., & Salunkhe, D. (1967). Gas chromatography of the field-, glass-greenhouse-grown, and artificially ripened tomatoes.: Lycopersicon esculentum mill. Phytochemistry, 6(1), 155–157.CrossRef
    Deltsidis, A., Pliakoni, E., Baldwin, E., Bai, J., Plotto, A., & Brecht, J. (2015). Tomato flavor changes at chilling and non-chilling temperatures as influenced by controlled atmospheres. Acta Horticulturae, 2, 703–709.CrossRef
    Ding, C.-K., Wang, C., Gross, K. C., & Smith, D. L. (2002). Jasmonate and salicylate indu-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta, 214(6), 895–901.CrossRef
    El Hadi, M., Zhang, F.-J., Wu, F.-F., Zhou, C.-H., & Tao, J. (2013). Advances in fruit aroma volatile research. Molecules, 18(7), 8200–8229.CrossRef
    Fagundes, C., Moraes, K., Pérez-Gago, M., Palou, L., Maraschin, M., & Monteiro, A. (2015). Effect of active modified atmosphere and cold storage on the postharvest quality of cherry tomatoes. Postharvest Biology and Technology, 109, 73–81.CrossRef
    Froehlich, J. E., Itoh, A., & Howe, G. A. (2001). Tomato allene oxide synthase and fatty acid hydroperoxide lyase, two cytochrome P450s involved in oxylipin metabolism, are targeted to different membranes of chloroplast envelope. Plant Physiology, 125(1), 306–317.CrossRef
    Fung, R. W., Wang, C. Y., Smith, D. L., Gross, K. C., Tao, Y., & Tian, M. (2006). Characterization of alternative oxidase (AOX) gene expression in response to methyl salicylate and methyl jasmonate pre-treatment and low temperature in tomatoes. Journal of Plant Physiology, 163(10), 1049–1060.CrossRef
    Gao, H., Zhu, B., Zhu, H., Zhang, Y., Xie, Y., Li, Y., & Luo, Y. (2007). Effect of suppression of ethylene biosynthesis on flavor products in tomato fruits. Russian Journal of Plant Physiology, 54(1), 80–88.CrossRef
    Griffiths, A., Barry, C., Alpuche-Solis, A. G., & Grierson, D. (1999). Ethylene and developmental signals regulate expression of lipoxygenase genes during tomato fruit ripening. Journal of Experimental Botany, 50(335), 793–798.CrossRef
    Howe, G. A., Lee, G. I., Itoh, A., Li, L., & DeRocher, A. E. (2000). Cytochrome P450-dependent metabolism of oxylipins in tomato. Cloning and expression of allene oxide synthase and fatty acid hydroperoxide lyase. Plant Physiology, 123(2), 711–724.CrossRef
    Ilg, A., Bruno, M., Beyer, P., & Al-Babili, S. (2014). Tomato carotenoid cleavage dioxygenases 1A and 1B: relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles. FEBS Open Bio, 4, 584–593.CrossRef
    Kader, A. (1984). Effects of postharvest handling procedures on tomato quality. Acta Horticulturae, 190, 209–221.
    Kader, A. A., Stevens, M. A., Albright-Holton, M., Morris, L. L., & Algazi, M. (1977). Effect of fruit ripeness when picked on flavor and composition in fresh market tomatoes. Journal of the American Society for Horticultural Science, 102(6), 724–731.
    Klee, H. J. (2010). Improving the flavor of fresh fruits: genomics, biochemistry, and biotechnology. New Phytologist, 187(1), 44–56.CrossRef
    Klee, H. J., & Giovannoni, J. J. (2011). Genetics and control of tomato fruit ripening and quality attributes. Annual Review of Genetics, 45, 41–59.CrossRef
    Kohlen, W., Charnikhova, T., Lammers, M., Pollina, T., Tóth, P., Haider, I., Pozo, M. J., Maagd, R. A., Ruyter-Spira, C., & Bouwmeester, H. J. (2012). The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytologist, 196(2), 535–547.CrossRef
    Lelièvre, J. M., Latche, A., Jones, B., Bouzayen, M., & Pech, J. C. (1997). Ethylene and fruit ripening. Physiologia Plantarum, 101(4), 727–739.CrossRef
    Lewinsohn, E., Sitrit, Y., Bar, E., Azulay, Y., Meir, A., Zamir, D., & Tadmor, Y. (2005). Carotenoid pigmentation affects the volatile composition of tomato and watermelon fruits, as revealed by comparative genetic analyses. Journal of Agricultural and Food Chemistry, 53(8), 3142–3148.CrossRef
    Lin, W., & Glass, A. (1997). The effects of NaCl addition and macronutrient concentration on fruit quality and flavor volatiles of greenhouse tomatoes. Acta Horticulturae, 481, 487–493.
    Longhurst, T., Lee, E., Hinde, R., Brady, C., & Speirs, J. (1994). Structure of the tomato Adh2 gene and Adh2 pseudogenes, and a study of Adh2 gene expression in fruit. Plant Molecular Biology, 26(4), 1073–1084.CrossRef
    Longhurst, T., Tung, H., & Brady, C. (1990). Developmental regulation of the expression of alcohol dehydrogenase in ripening tomato fruits. Journal of Food Biochemistry, 14(6), 421–433.CrossRef
    Mageroy, M. H., Tieman, D. M., Floystad, A., Taylor, M. G., & Klee, H. J. (2012). A Solanum lycopersicum catechol-O-methyltransferase involved in synthesis of the flavor molecule guaiacol. The Plant Journal, 69(6), 1043–1051.CrossRef
    Maloney, G. S., Kochevenko, A., Tieman, D. M., Tohge, T., Krieger, U., Zamir, D., Taylor, M. G., Fernie, A. R., & Klee, H. J. (2010). Characterization of the branched-chain amino acid aminotransferase enzyme family in tomato. Plant Physiology, 153(3), 925–936.CrossRef
    Mathieu, S., Dal Cin, V., Fei, Z., Li, H., Bliss, P., Taylor, M. G., Klee, H. J., & Tieman, D. M. (2009). Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition. Journal of Experimental Botany, 60(1), 325–337.CrossRef
    Matsuda, F., Yonekura-Sakakibara, K., Niida, R., Kuromori, T., Shinozaki, K., & Saito, K. (2009). MS/MS spectral tag-based annotation of non-targeted profile of plant secondary metabolites. The Plant Journal, 57(3), 555–577.CrossRef
    Maul, F., Sargent, S., Sims, C., Baldwin, E., Balaban, M., & Huber, D. (2000). Tomato flavor and aroma quality as affected by storage temperature. Journal of Food Science, 65(7), 1228–1237.CrossRef
    Maul, F., Sargent, S. A., Balaban, M. O., Baldwin, E. A., Huber, D. J., & Sims, C. A. (1998). Aroma volatile profiles from ripe tomatoes are influenced by physiological maturity at harvest: an application for electronic nose technology. Journal of the American Society for Horticultural Science, 123(6), 1094–1101.
    McCraw, D., Motes, J., & Schatzer, R. J. (1988). Commercial production of fresh market tomatoes. Oklahoma Cooperative Extension Service. http://​pods.​dasnr.​okstate.​edu/​docushare/​dsweb/​Get/​Document-1112/​HLA-6019web.​pdf . Accessed 20 July 2015.
    McDonald, R., McCollum, T., & Baldwin, E. (1996). Prestorage heat treatments influence free sterols and flavor volatiles of tomatoes stored at chilling temperature. Journal of the American Society for Horticultural Science, 121(3), 531–536.
    McDonald, R., McCollum, T., & Baldwin, E. (1999). Temperature of water heat treatments influences tomato fruit quality following low-temperature storage. Postharvest Biology and Technology, 16(2), 147–155.CrossRef
    McGlasson, W., Last, J., Shaw, K., & Meldrum, S. (1987). Influence of the non-ripening mutants rin and nor on the aroma of tomato fruit. Hortscience, 22(4), 632–634.
    Mikkelsen, R. (2005). Tomato flavor and plant nutrition: a brief review. Better Crops with Plant Food, 89(2), 14–15.
    Ozores-Hampton, M. P., Simonne, E., McAvoy, G., Roka, F., Stansly, P., Shukla, S., Roberts, P., Morgan, K., Cushman, K., & Obreza, T. A. (2006). Nitrogen best management practice with tomato production in Florida in the 2005–2006 season. Proceedings of the Florida State Horticultural Society, 119, 284–288.
    Pesaresi, P., Mizzotti, C., Colombo, M., & Masiero, S. (2014). Genetic regulation and structural changes during tomato fruit development and ripening. Frontiers in Plant Science, 5, 124.CrossRef
    Picton, S., Barton, S. L., Bouzayen, M., Hamilton, A. J., & Grierson, D. (1993). Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene. The Plant Journal, 3(3), 469–481.CrossRef
    Pirrello, J., Regad, F., Latche, A., Pech, J.-C., & Bouzayen, M. (2009). Regulation of tomato fruit ripening. CAB Reviews., 4(51), 1–14.CrossRef
    Rambla, J. L., Tikunov, Y. M., Monforte, A. J., Bovy, A. G., & Granell, A. (2014). The expanded tomato fruit volatile landscape. Journal of Experimental Botany, 65(16), 4613–4623.CrossRef
    Ratanachinakorn, B., Klieber, A., & Simons, D. (1997). Effect of short-term controlled atmospheres and maturity on ripening and eating quality of tomatoes. Postharvest Biology and Technology, 11(3), 149–154.CrossRef
    Renard, C. M., Ginies, C., Gouble, B., Bureau, S., & Causse, M. (2013). Home conservation strategies for tomato (Solanum lycopersicum): storage temperature vs. duration-is there a compromise for better aroma preservation? Food Chemistry, 139(1), 825–836.CrossRef
    Riley, J., Willemot, C., & Thompson, J. E. (1996). Lipoxygenase and hydroperoxide lyase activities in ripening tomato fruit. Postharvest Biology and Technology, 7(1), 97–107.CrossRef
    Sevillano, L., Sanchez-Ballesta, M. T., Romojaro, F., & Flores, F. B. (2009). Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact. Journal of the Science of Food and Agriculture, 89(4), 555–573.CrossRef
    Seymour, G. B., Taylor, J. E., & Tucker, G. A. (1993). Biochemistry of fruit ripening. London: Chapman and Hall.CrossRef
    Shen, J., Tieman, D., Jones, J. B., Taylor, M. G., Schmelz, E., Huffaker, A., Bies, D., Chen, K., & Klee, H. J. (2014). A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. Journal of Experimental Botany, 65(2), 419–428.CrossRef
    Simkin, A. J., Schwartz, S. H., Auldridge, M., Taylor, M. G., & Klee, H. J. (2004). The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone, pseudoionone, and geranylacetone. The Plant Journal, 40(6), 882–892.CrossRef
    Speirs, J., Lee, E., Holt, K., Yong-Duk, K., Scott, N. S., Loveys, B., & Schuch, W. (1998). Genetic manipulation of alcohol dehydrogenase levels in ripening tomato fruit affects the balance of some flavor aldehydes and alcohols. Plant Physiology, 117(3), 1047–1058.CrossRef
    Tandon, K. S., Jordan, M., Goodner, K. L., & Baldwin, E. A. (2001). Characterization of fresh tomato aroma volatiles using GC-olfactometry. Proceedings of the Florida State Horticultural Society, 114, 142–144.
    Thybo, A. K., Edelenbos, M., Christensen, L. P., Sørensen, J. N., & Thorup-Kristensen, K. (2006). Effect of organic growing systems on sensory quality and chemical composition of tomatoes. LWT-Food Science and Technology, 39(8), 835–843.CrossRef
    Tieman, D., Taylor, M., Schauer, N., Fernie, A. R., Hanson, A. D., & Klee, H. J. (2006a). Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proceedings of the National Academy of Sciences, 103(21), 8287–8292.CrossRef
    Tieman, D., Zeigler, M., Schmelz, E., Taylor, M. G., Rushing, S., Jones, J. B., & Klee, H. J. (2010). Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. The Plant Journal, 62(1), 113–123.CrossRef
    Tieman, D. M., Loucas, H. M., Kim, J. Y., Clark, D. G., & Klee, H. J. (2007). Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol. Phytochemistry, 68(21), 2660–2669.CrossRef
    Tieman, D. M., Zeigler, M., Schmelz, E. A., Taylor, M. G., Bliss, P., Kirst, M., & Klee, H. J. (2006b). Identification of loci affecting flavour volatile emissions in tomato fruits. Journal of Experimental Botany, 57(4), 887–896.CrossRef
    Tikunov, Y., Lommen, A., de Vos, C. R., Verhoeven, H. A., Bino, R. J., Hall, R. D., & Bovy, A. G. (2005). A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiology, 139(3), 1125–1137.CrossRef
    Tikunov, Y. M., Molthoff, J., de Vos, R. C., Beekwilder, J., van Houwelingen, A., van der Hooft, J. J., Nijenhuis-de Vries, M., Labrie, C. W., Verkerke, W., & van de Geest, H. (2013). NON-SMOKY GLYCOSYLTRANSFERASE1 prevents the release of smoky aroma from tomato fruit. The Plant Cell, 25(8), 3067–3078.CrossRef
    van Gemert, L. (2003). Odour thresholds-compilations of odour thresholds in air, water and other media. Utrecht: Oliemans Punter & Partners BV.
    Viljanen, K., Lille, M., Heiniö, R.-L., & Buchert, J. (2011). Effect of high-pressure processing on volatile composition and odour of cherry tomato purée. Food Chemistry, 129(4), 1759–1765.CrossRef
    Vogel, J. T., Walter, M. H., Giavalisco, P., Lytovchenko, A., Kohlen, W., Charnikhova, T., Simkin, A. J., Goulet, C., Strack, D., & Bouwmeester, H. J. (2010). SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. The Plant Journal, 61(2), 300–311.CrossRef
    Wang, L., Baldwin, E. A., Plotto, A., Luo, W., Raithore, S., Yu, Z., & Bai, J. (2015a). Effect of methyl salicylate and methyl jasmonate pre-treatment on the volatile profile in tomato fruit subjected to chilling temperature. Postharvest Biology and Technology., 108, 28–38.CrossRef
    Wang, L., Baldwin, E. A., Zhao, W., Plotto, A., Sun, X., Wang, Z., Brecht, J. K., Bai, J., & Yu, Z. (2015b). Suppression of volatile production in tomato fruit exposed to chilling temperature and alleviation of chilling injury by a pre-chilling heat treatment. LWT-Food Science and Technology, 62(1), 115–121.CrossRef
    Wang, L., Baldwin, E. A., Yu, Z., & Bai, J. (2015c). The impact of kitchen and food service preparation practices on the volatile aroma profile in ripe tomatoes: effects of refrigeration and blanching. Hortscience, 50(9), 1358–1364.
    Wills, R., & Ku, V. (2002). Use of 1-MCP to extend the time to ripen of green tomatoes and postharvest life of ripe tomatoes. Postharvest Biology and Technology, 26(1), 85–90.CrossRef
    Wright, D. H., & Harris, N. D. (1985). Effect of nitrogen and potassium fertilization on tomato flavor. Journal of Agricultural and Food Chemistry, 33(3), 355–358.CrossRef
    Yang, S. F., & Hoffman, N. E. (1984). Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology, 35(1), 155–189.CrossRef
    Zanor, M. I., Rambla, J.-L., Chaïb, J., Steppa, A., Medina, A., Granell, A., Fernie, A. R., & Causse, M. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139–2154.CrossRef
    Zhang, X., Shen, L., Li, F., Meng, D., & Sheng, J. (2011). Methyl salicylate-induced arginine catabolism is associated with up-regulation of polyamine and nitric oxide levels and improves chilling tolerance in cherry tomato fruit. Journal of Agricultural and Food Chemistry, 59(17), 9351–9357.CrossRef
  • 作者单位:Libin Wang (1) (2)
    Elizabeth A. Baldwin (1)
    Jinhe Bai (1)

    1. USDA, ARS, Horticultural Research Laboratory, 2001 S. Rock Rd, Ft. Pierce, FL, 34945, USA
    2. Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Food Science
    Chemistry
    Agriculture
    Biotechnology
  • 出版者:Springer New York
  • ISSN:1935-5149
文摘
Aroma, an essential characteristic of tomato fruit, plays an important role in determining the perception and acceptability of tomato products by consumers. During tomato fruit ripening, associated with color changes from green to red involving the conversion of chloroplasts to chromoplasts are changes of aromatic volatile profiles. Although the biosynthetic pathways for some aromatic volatiles have been established in tomato fruit recently, our knowledge of regulatory mechanisms is still rudimentary. On the other hand, many internal and external factors modify volatile metabolism in tomato fruit. This review first summarizes the current knowledge of expression patterns and biosynthetic pathways of aromatic volatiles in tomato fruit along with the role of ethylene in their biosynthesis. The impact of internal and pre- and postharvest external factors on volatile composition is then discussed. This review will provide critical information for research on tomato aromatic volatiles and their manipulation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700