Courtship Songs of Green Lacewings Filmed in Slow Motion: How a Simple Vibrating Structure can Generate Complex Signals (Neuroptera: Chrysopidae: Chrysoperla)
详细信息    查看全文
  • 作者:Charles S. Henry ; Marta Lucía Martínez Wells
  • 关键词:Songs ; bioacoustics ; biomechanics ; song evolution ; tremulation
  • 刊名:Journal of Insect Behavior
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:28
  • 期:2
  • 页码:89-106
  • 全文大小:2,591 KB
  • 参考文献:1. Bennet-Clark, HC (1998) Size and scale effects as constraints in insect sound communication. Philos Trans R Soc Lond Ser B Biol Sci 353: pp. 407-419 CrossRef
    2. Bennet-Clark, HC (1999) Resonators in insect sound production: how insects produce loud pure-tone songs. J Exp Biol 202: pp. 3347-3357
    3. Bennet-Clark, HC, Daws, AG (1999) Transduction of mechanical energy into sound energy in the cicada Cyclochila australasiae. J Exp Biol 202: pp. 1803-1817
    4. Boersma P, Weenink D (2013) Praat: Doing phonetics by computer. Version 5.3.56, retrieved 15 September 2013 from http://www.praat.org. Institute of Phonetics Sciences, University of Amsterdam, Amsterdam, The Netherlands
    5. Bradbury, JW, Vehrencamp, SL (2011) Principles of animal communication. Sinauer Associates, Sunderland
    6. Busnel, RG, Pasquinelly, F, Dumortier, B (1955) La tremulation du corps et la transmission aux supports des vibrations en résultant comme moyen d'information à courte portée des Ephippigères males et femelles. Bulletin de la Societé Zoologique de France 80: pp. 18-22
    7. Claridge, MF (1985) Acoustic signals in the Homoptera: behavior, taxonomy, and evolution. Annu Rev Entomol 30: pp. 297-317 CrossRef
    8. Cocroft, RB (1999) Offspring-parent communication in a subsocial treehopper (Hemiptera: Membracidae: Umbonia crassicornis). Behaviour 136: pp. 1-21 CrossRef
    9. Cocroft, RB (2011) The public world of insect vibrational communication. Mol Ecol 20: pp. 2041-2043 CrossRef
    Cocroft, RB, Gogala, M, Hill, PSM, Wessel, A eds. (2014) Studying vibrational communication, vol 3. animal signals and communication. Springer, New York
    10. Cocroft, RB, Rodríguez, RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55: pp. 323-334 CrossRef
    11. Cocroft, RB, Shugart, HJ, Konrad, KT, Tibbs, K (2006) Variation in plant substrates and its consequences for insect vibrational communication. Ethology 112: pp. 779-789 CrossRef
    12. Cokl, A, Doberlet, MV (2003) Communication with substrate-borne signals in small plant-dwelling insects. Annu Rev Entomol 48: pp. 29-50 CrossRef
    13. Cokl, A, Zorovic, M, Zuni, A, Virant-Doberlet, M (2005) Tuning of host plants with vibratory songs of Nezara viridula L (Heteroptera: Pentatomidae). J Exp Biol 208: pp. 1481-1488 CrossRef
    14. Elsner, N (1975) Neuroethology of sound production in gomphocerine grasshoppers. II. neuromuscular activity underlying stridulation. J Comp Physiol A 97: pp. 291-322 CrossRef
    15. Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M, Mazzoni V (2011) Inter-plant vibrational communication in a leafhopper insect. PLoS ONE 6 (5). doi:10.1371/journal.pone.0019692
    16. Gerhardt, HC, Huber, F (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. University of Chicago Press, Chicago
    17. Greenfield, MD Acoustic communication in Orthoptera. In: Gangwere, SK, Muralirangan, MC, Muralirangan, M eds. (1997) Bionomics of grasshoppers. Katydids and Their Kin. C-a-B International, Wallingford, Oxon, pp. 197-230
    18. Hagen, KS, Tassan, RL (1970) The influence of food Wheast and related Saccharomyces fragilis yeast products on the fecundity of Chrysopa carnea (Neuroptera, Chrysopidae). Can Entomol 102: pp. 806-811 CrossRef
    19. Heinrich, R Mechanical communication: producing sound and substrate vibrations. In: Simpson, SJ, Douglas, AE eds. (2013) R. F. Chapman's the insects: structure and function. Cambridge University Press, Cambridge, pp. 824-856
    20. Henry, CS (1983) Temperature-induced changes in the calls of th
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Animal Systematics/Taxonomy/ Biogeography
    Zoology
    Animal Physiology
    Ecology
    Evolutionary Biology
  • 出版者:Springer Netherlands
  • ISSN:1572-8889
文摘
All of the cryptic species in the Chrysoperla carnea-group of green lacewings produce substrate-borne duetting songs by vibrating the abdomen up and down. Here, we examine the motion of the abdomen during song production using a high-speed video camera. Through temporal (oscillogram) and frequency (sonogram) analysis, these motions are compared to the vibrational signals recorded from the substrate. In tests of three focal and seven non-focal species, we find that the movement of the abdomen follows a path that induces complex oscillations in lightweight substrates. Although the waveform of the signal in the substrate does not exactly mirror the waveform of abdominal motion, the frequencies of the two waveforms are nevertheless identical. In all species, the abdomen is driven by neuromuscular elements that simultaneously generate two or more signals (tones) of different frequency within the abdomen. Comparison in different species of how the abdomen moves when producing these distinct tones potentially allows us to detect homologous song elements across the carnea-group, thus clarifying some patterns of song evolution in this rapidly evolving clade.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700