Cretaceous environmental changes led to high extinction rates in a hyperdiverse beetle family
详细信息    查看全文
  • 作者:Gael J Kergoat (1)
    Patrice Bouchard (2)
    Anne-Laure Clamens (1)
    Jessica L Abbate (3)
    Herv茅 Jourdan (4)
    Roula Jabbour-Zahab (3)
    Gwenaelle Genson (1)
    Laurent Soldati (1)
    Fabien L Condamine (5)

    1. INRA - UMR 1062 CBGP (INRA
    ; IRD ; CIRAD ; Montpellier SupAgro) ; Campus de Baillarguet ; 34988 ; Montferrier-sur-Lez ; France
    2. Canadian National Collection of Insects
    ; Arachnids and Nematodes ; Agriculture and Agri-Food Canada ; 960 Carling Avenue ; Ottawa ; ON ; K1A 0C6 ; Canada
    3. CNRS - UMR 5175 CEFE (CNRS
    ; Universit茅 Montpellier 2) ; 1919 Route de Mende ; 34293 ; Montpellier ; France
    4. IRD
    ; UMR 237 IMBE (IRD ; Aix-Marseille Universit茅 ; CNRS ; Universit茅 d鈥橝vignon et des pays de Vaucluse) ; Centre IRD de Noum茅a ; 98848 ; Noum茅a ; Nouvelle-Cal茅donie ; France
    5. Department of Biological and Environmental Sciences
    ; University of Gothenburg ; Box 461 ; SE-405 30 ; G枚teborg ; Sweden
  • 关键词:Cretaceous ; palaeogene mass extinction ; Cretaceous terrestrial revolution ; Dating analyses ; Diversification analyses ; Environmental changes ; Palaeoclimates ; Tenebrionidae
  • 刊名:BMC Evolutionary Biology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:3,474 KB
  • 参考文献:1. Lloyd, GT, Davis, KE, Pisani, D, Tarver, JE, Ruta, M, Sakamoto, M, Hone, DW, Jennings, R, Benton, MJ (2008) Dinosaurs and the Cretaceous terrestrial revolution. Proc R Soc B 275: pp. 2483-2490 CrossRef
    2. Coiffard, C, Gomez, B, Daviero-Gomez, V, Dilcher, DL (2012) Rise to dominance of angiosperm pioneers in European Cretaceous environments. Proc Natl Acad Sci U S A 109: pp. 20955-20959 CrossRef
    3. Spicer, RA, Chapman, JL (1990) Climate change and the evolution of high-latitude terrestrial vegetation and floras. Trends Ecol Evol 5: pp. 279-284 CrossRef
    4. Vakhrameev, VA (1991) Jurassic and Cretaceous floras and climates of the Earth. Cambridge University Press, Cambridge
    5. Morley, RJ Cretaceous and Tertiary Climate Change and the Past Distribution of Megathermal Rainforests. In: Bush, MB, Flenley, J eds. (2007) Tropical Rainforest Responses to Climatic Changes. Praxis Publishing, Chichester, pp. 1-31 CrossRef
    6. Hallam, A (1984) Continental humid and arid zones during the Jurassic and Cretaceous. Palaeogeogr Palaeoclim Palaeoecol 47: pp. 195-223 CrossRef
    7. F枚llmi, KB (2011) Early Cretaceous life, climate and anoxia. Cretaceous Res 35: pp. 230-257 CrossRef
    8. Labandeira, CC (2013) A paleobiologic perspective on plant-insect interactions. Curr Opin Plant Biol 16: pp. 414-421 CrossRef
    9. Benton, MJ (2010) The origins of modern biodiversity on land. Phil Trans R Soc B 365: pp. 3667-3679 CrossRef
    10. Farrell, BD (1998) 鈥淚nordinate fondness鈥?explained: why are there so many beetles?. Science 281: pp. 555-559 CrossRef
    11. Moreau, CS, Bell, CD, Vila, R, Archibald, SB, Pierce, NE (2006) Phylogeny of the ants: diversification in the age of angiosperms. Science 312: pp. 101-104 CrossRef
    12. McKenna, DD, Sequeira, AS, Marvaldi, AE, Farrell, BD (2009) Temporal lags and overlap in the diversification of weevils and flowering plants. Proc Natl Acad Sci U S A 106: pp. 7083-7088 CrossRef
    13. Wahlberg, N, Wheat, CW, Pe帽a, C (2013) Timing and patterns in the taxonomic diversification of Lepidoptera (butterflies and moths). PLoS One 8: pp. e80875 CrossRef
    14. Meredith, RW, Jane膷ka, JE, Gatesy, J, Ryder, OA, Fisher, CA, Teeling, EC, Goodbla, A, Eizirik, E, Simao, TLL, Stadler, T, Rabosky, DL, Honeycutt, RL, Flynn, JJ, Ingram, CM, Steiner, C, Williams, TL, Robinson, TJ, Burk-Herrick, A, Westerman, M, Ayoub, NA, Springer, MS, Murphy, WJ (2011) Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334: pp. 521-524 CrossRef
    15. Jetz, W, Thomas, GH, Joy, JB, Hartmann, K, Mooers, AO (2012) The global diversity of birds in space and time. Nature 491: pp. 444-448 CrossRef
    16. Roelants, K, Gower, DJ, Wilkinson, M, Loader, SP, Biju, SD, Guillaume, K, Moriau, L, Bossuyt, F (2007) Global patterns of diversification in the history of modern amphibians. Proc Natl Acad Sci U S A 104: pp. 887-892 CrossRef
    17. Grimaldi, D, Engel, MS (2005) Evolution of the insects. Cambridge University Press, Cambridge
    18. Stadler, T (2011) Mammalian phylogeny reveals recent diversification rate shifts. Proc Natl Acad Sci U S A 108: pp. 6187-6192 CrossRef
    19. Pyron, RA, Burbrink, FT (2013) Phylogenetic estimates of speciation and extinction rate for testing ecological and evolutionary hypotheses. Trends Ecol Evol 28: pp. 729-736 CrossRef
    20. Moreau, CS, Bell, CD (2013) Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution 67: pp. 2240-2257 CrossRef
    21. Rehan, SM, Leys, R, Schwarz, MP (2013) First evidence of a massive extinction event affecting bees close to the K-T boundary. PLoS One 8: pp. e76683 CrossRef
    22. Hunt, T, Bergsten, J, Levkani膷ova, Z, Papadopoulou, A, St John, O, Wild, R, Hammond, PM, Ahrens, D, Balke, M, Caterino, MS, G贸mez-Zurita, J, Ribera, I, Barraclough, TG, Bocakova, M, Bocak, L, Vogler, AP (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318: pp. 1913-1916 CrossRef
    23. Wang, B, Zhang, H, Jarzembowski, EA (2013) Early Cretaceous angiosperms and beetle evolution. Front Plant Sci 4: pp. 360
    24. 艢lipi艅ski, SA, Leschen, RAB, Lawrence, JF (2011) Order coleoptera linnaeus, 1758. Zootaxa 3148: pp. 203-208
    25. Matthews, EG, Lawrence, JF, Bouchard, P, Steiner, WE, Slipi艅ski, SA 11.14. Tenebrionidae Latreille, 1802. In: Leschen, RAB, Beutel, RG, Lawrence, JF eds. (2010) Handbook of Zoology. A Natural History of the Phyla of the Animal Kingdom. Volume IV - Arthropoda: Insecta. Part 38. Coleoptera, Beetles. Volume 2: Systematics (Part 2). Walter de Gruyter, Berlin, pp. 574-659
    26. Watt, JC (1974) A revised subfamily classification of Tenebrionidae (Coleoptera). New Zealand J Zool 1: pp. 381-452 CrossRef
    27. Geisthardt, M (2003) Tenebrionidae (Insecta, Coleoptera) as an indicator for climatic changes on the Cape Verde Islands. Spec Bull Jap Soc Coleopt 6: pp. 331-337
    28. Kirejtshuk, AG, Merkl, O, Kernegger, F (2008) A new species of the genus Pentaphyllus Dejean, 1821 (Coleoptera: Tenebrionidae, Diaperinae) from the Baltic amber and checklist of the fossil Tenebrionidae. Zoosyst Ross 17: pp. 131-137
    29. Matthews, EG (1998) Classification, phylogeny and biogeography of the genera of Adeliini (Coleoptera: Tenebrionidae). Inver Taxon 12: pp. 685-824 CrossRef
    30. Matthews, EG, Bouchard, P (2008) Tenebrionid Beetles of Australia: Description of Tribes, Keys to Genera, Catalogue of Species. Australian Biological Resources Study, Canberra
    31. McKenna, DD, Farrell, BD Beetles (Coleoptera). In: Hedges, SB, Kumar, S eds. (2009) The Timetree of Life. Oxford University Press, New York, pp. 278-289
    32. Crisp, MD, Arroyo, MTK, Cook, LG, Gandolfo, MA, Jordan, GJ, McGlone, MS, Weston, PH, Westoby, M, Wilf, P, Linder, HP (2009) Phylogenetic biome conservatism on a global scale. Nature 458: pp. 754-756 CrossRef
    33. Chandler, MA, Rind, D, Ruedy, R (1992) Pangaean during the Early Jurassic: GCM simulations and the sedimentary record of paleoclimate. Geol Soc Am Bull 104: pp. 543-559 CrossRef
    34. Parrish, JT (1993) Climate of the supercontinent Pangea. J Geol 101: pp. 215-233 CrossRef
    35. Byrne, M, Yeates, DK, Joseph, L, Kearney, M, Bowler, J, Williams, MAJ, Cooper, S, Donnellan, SC, Keogh, JS, Leys, R, Melville, J, Murphy, DJ, Porch, N, Wyrwoll, KH (2008) Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Mol Ecol 17: pp. 4398-4417 CrossRef
    36. Byrne, M, Steane, DA, Joseph, L, Yeates, DK, Jordan, GJ, Crayn, D, Aplin, K, Cantrill, DJ, Cook, LG, Crisp, MD, Keogh, JS, Melville, J, Moritz, C, Porch, N, Sniderman, JMK, Sunnucks, P, Weston, PH (2011) Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. J Biogeogr 38: pp. 1635-1656 CrossRef
    37. Matthews, EG (2000) Origins of Australian arid-zone tenebrionid beetles. Invert Syst 14: pp. 941-951 CrossRef
    38. Zachos, JC, Dickens, GR, Zeebe, RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451: pp. 279-283 CrossRef
    39. Veizer, J, Godderis, Y, Fran莽ois, LM (2000) Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature 408: pp. 698-701 CrossRef
    40. Prokoph A, Shields GA, Veizer J: Compilation and time-series analysis of a marine carbonate 未 18 O, 未 13 C, 87 Sr/ 86 Sr and 未 34 S database through Earth history. / Earth-Sci Rev 2008, 87:113鈥?33.
    41. Blakey, RC Gondwana Paleogeography From Assembly to Breakup 鈥?A 500 Million Year Odyssey. In: Fielding, CR, Frank, TD, Isbell, JL eds. (2008) Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America Special Paper 441. Geological Society of America, Boulder, CO, pp. 1-28 CrossRef
    42. Mitterboeck, TF, Adamowicz, SJ (2013) Flight loss linked to faster molecular evolution in insects. Proc R Soc B 280: pp. 20131128 CrossRef
    43. Parmesan, C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37: pp. 637-669 CrossRef
    44. Ikeda, H, Nishikawa, M, Sota, T (2012) Loss of flight promotes beetle diversification. Nat Commun 3: pp. 648 CrossRef
    45. Cornell, HV (2013) Is regional species diversity bounded or unbounded?. Biol Rev 88: pp. 140-165 CrossRef
    46. Erwin, DH (2009) Climate as a driver of evolutionary change. Curr Biol 19: pp. R575-R583 CrossRef
    47. Mayhew, PJ, Jenkins, GN, Benton, TG (2009) A long-term association between global temperature and biodiversity, origination and extinction in the fossil record. Proc R Soc Lond B 275: pp. 47-53 CrossRef
    48. Condamine, FL, Rolland, J, Morlon, H (2013) Macroevolutionary perspectives to environmental change. Ecol Lett 16: pp. 72-85 CrossRef
    49. Kergoat GJ, Soldati L, Clamens A-L, Jourdan H, Jabbour-Zahab R, Genson G, Bouchard P, Condamine FL: Higher-level molecular phylogeny of darkling beetles (Coleoptera, Tenebrionoidea, Tenebrionidae). / Syst Entomol. in press.
    50. Drummond, AJ, Suchard, MA, Xie, D, Rambaut, A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29: pp. 1969-1973 CrossRef
    51. Parham, JF, Donoghue, PC, Bell, CJ, Calway, TD, Head, JJ, Holroyd, PA, Inoue, JG, Irmis, RB, Joyce, WG, Ksepka, DT, Patan茅, JSL, Smith, ND, Tarver, JE, Tuinen, M, Yang, Z, Angielczyk, KD, Greenwood, JM, Hipsley, CA, Jacobs, L, Makovicky, PJ, M眉ller, J, Smith, KT, Theodor, JM, Warnock, RCM, Benton, MJ (2012) Best practices for justifying fossil calibrations. Syst Biol 61: pp. 346-359 CrossRef
    52. Sauquet, H, Ho, SYW, Gandolfo, MA, Jordan, GJ, Wilf, P, Cantrill, DJ, Bayly, MJ, Bromham, L, Brown, GK, Carpenter, RJ, Lee, DM, Murphy, DJ, Sniderman, JMK, Udovicic, F (2012) Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales). Syst Biol 61: pp. 289-313 CrossRef
    53. Gradstein, FM, Ogg, JG, Schmitz, M, Ogg, G (2012) The Geologic Time Scale 2012. Elsevier, Boston
    54. Condamine, FL, Soldati, L, Clamens, A-L, Rasplus, J-Y, Kergoat, GJ (2013) Diversification patterns and processes of wingless endemic insects in the Mediterranean Basin: historical biogeography of the genus Blaps (Coleoptera: Tenebrionidae). J Biogeogr 40: pp. 1899-1913 CrossRef
    55. Kergoat, GJ, Ru, BP, Genson, G, Cruaud, C, Couloux, A, Delobel, A (2011) Phylogenetics, species boundaries and timing of resource tracking in a highly specialized group of seed beetles (Coleoptera: Chrysomelidae: Bruchinae). Mol Phylogenet Evol 59: pp. 746-760 CrossRef
    56. Fern谩ndez-Palacios, JM, Nascimento, L, Otto, R, Delgado, JD, Garcia-del-Rey, E, Ar茅valo, JR, Whittaker, RJ (2011) A reconstruction of Palaeo-Macaronesia, with particular reference to the long-term biogeography of the Atlantic island laurel forest. J Biogeogr 38: pp. 226-246 CrossRef
    57. Lopez-Vaamonde, C, Wikstr枚m, N, Labandeira, C, Godfray, HCJ, Goodman, SJ, Cook, JM (2006) Fossil-calibrated molecular phylogenies reveal that leaf-mining moths radiated millions of years after their host plants. J Evol Biol 19: pp. 1314-1326 CrossRef
    58. Biffin, E, Hill, RS, Lowe, AJ (2010) Did Kauri (Agathis: Araucariaceae) really survive the Oligocene drowning of New Zealand?. Syst Biol 59: pp. 594-602 CrossRef
    59. Crisp, MD, Cook, LG (2011) Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. New Phyt 192: pp. 997-1009 CrossRef
    60. Yang, Z, Rannala, B (2006) Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol Biol Evol 23: pp. 212-226 CrossRef
    61. Ho, SYW, Phillips, MJ (2009) Accounting for calibration uncertainties in phylogenetic estimation of evolutionary divergence times. Syst Biol 58: pp. 367-380 CrossRef
    62. Lartillot, N, Philippe, H (2006) Computing Bayes factors using thermodynamic integration. Syst Biol 55: pp. 195-207 CrossRef
    63. Baele, G, Li, WLS, Drummond, AJ, Suchard, MA, Lemey, P (2013) Accurate model selection of relaxed clocks in Bayesian phylogenetics. Mol Biol Evol 30: pp. 239-243 CrossRef
    64. Rambaut A, Drummond AJ: / Tracer v1.5. http://beast.bio.ed.ac.uk/Tracer.
    65. Kass, RE, Raftery, AE (1995) Bayes factors. J Am Stat Assoc 90: pp. 773-795 CrossRef
    66. Cusimano, N, Renner, SS (2010) Slowdowns in diversification rates from real phylogenies may be not real. Syst Biol 59: pp. 458-464 CrossRef
    67. Davies, MP, Midford, PE, Maddison, W (2013) Exploring power and parameter estimation of the BiSSE method for analysing species diversification. BMC Evol Biol 13: pp. 38 CrossRef
    68. Goldberg, EE, Kohn, JR, Lande, R, Robertson, KA, Smith, SA, Igic, B (2010) Species selection maintains self-incompatibility. Science 330: pp. 493-495 CrossRef
    69. Hugall, AF, Stuart-Fox, D (2012) Accelerated speciation in colour-polymorphic birds. Nature 485: pp. 631-634 CrossRef
    70. Magall贸n, S, Sanderson, MJ (2001) Absolute diversification rates in angiosperm clades. Evolution 55: pp. 1762-1780 CrossRef
    71. Lewis, P (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50: pp. 913-925 CrossRef
    72. Maddison WP, Maddison DR: / Mesquite: A Modular System for Evolutionary Analysis, Version 2.75. Available at http://mesquiteproject.org. 2011.
    73. Schluter, D, Price, T, Mooers, AO, Ludwig, D (1997) Likelihood of ancestor states in adaptive radiation. Evolution 51: pp. 1699-1711 CrossRef
    74. Ricklefs, RE (2007) Estimating diversification rates from phylogenetic information. Trends Ecol Evol 22: pp. 602-610 CrossRef
    75. Rabosky, DL (2009) Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. Ecol Lett 12: pp. 735-743 CrossRef
    76. Rabosky, DL (2010) Primary controls on species richness in higher taxa. Syst Biol 59: pp. 634-645 CrossRef
  • 刊物主题:Evolutionary Biology; Animal Systematics/Taxonomy/Biogeography; Entomology; Genetics and Population Dynamics; Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1471-2148
文摘
Background As attested by the fossil record, Cretaceous environmental changes have significantly impacted the diversification dynamics of several groups of organisms. A major biome turnover that occurred during this period was the rise of angiosperms starting ca. 125 million years ago. Though there is evidence that the latter promoted the diversification of phytophagous insects, the response of other insect groups to Cretaceous environmental changes is still largely unknown. To gain novel insights on this issue, we assess the diversification dynamics of a hyperdiverse family of detritivorous beetles (Tenebrionidae) using molecular dating and diversification analyses. Results Age estimates reveal an origin after the Triassic-Jurassic mass extinction (older than previously thought), followed by the diversification of major lineages during Pangaean and Gondwanan breakups. Dating analyses indicate that arid-adapted species diversified early, while most of the lineages that are adapted to more humid conditions diversified much later. Contrary to other insect groups, we found no support for a positive shift in diversification rates during the Cretaceous; instead there is evidence for an 8.5-fold increase in extinction rates that was not compensated by a joint increase in speciation rates. Conclusions We hypothesize that this pattern is better explained by the concomitant reduction of arid environments starting in the mid-Cretaceous, which likely negatively impacted the diversification of arid-adapted species that were predominant at that time.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700