Control of soil pH on turnover of belowground organic matter in subalpine grassland
详细信息    查看全文
  • 作者:Jens Leifeld (1)
    Seraina Bassin (1)
    Franz Conen (2)
    Irka Hajdas (3)
    Markus Egli (4)
    Jürg Fuhrer (1)
  • 关键词:Radiocarbon ; Soil fractionation ; Roots ; XRD ; POM ; Turnover ; 15N
  • 刊名:Biogeochemistry
  • 出版年:2013
  • 出版时间:3 - March 2013
  • 年:2013
  • 卷:112
  • 期:1
  • 页码:59-69
  • 全文大小:392KB
  • 参考文献:1. Anderson JM (1991) The effects of climate change on decomposition processes in grassland and coniferous forests. Ecol Appl 1:326-47 CrossRef
    2. Bassin S, Volk M, Suter M, Buchmann N, Fuhrer J (2007) Nitrogen but not ozone affects productivity and species composition of subalpine grassland after 3?year of treatment. New Phytol 175:523-34 CrossRef
    3. Bouma J, Hoeks J, van der Plas L, van Scherrenburg B (1969) Genesis and morphology of some alpine podzol profiles. J Soil Sci 20:384-98 CrossRef
    4. Budge K, Leifeld J, Hiltbrunner E, Fuhrer J (2011) Alpine grassland soils contain large proportion of labile carbon but indicate long turnover times. Biogeosciences 8:1911-923 CrossRef
    5. Conen F, Zimmermann M, Leifeld J, Seth B, Alewell C (2008) Relative stability of soil carbon revealed by shifts in delta N-15 and C:N ratio. Biogeosciences 5:123-28 CrossRef
    6. Denef K, Six J, Merckx R, Paustian K (2004) Carbon sequestration in microaggregates of no-tillage soils with different clay mineralogy. Soil Sci Soc Am J 68:1935-944 CrossRef
    7. Egli M, Mirabella A, Sartori G, Fitze P (2003) Weathering rates as a function of climate: results from a climosequence of the Val Genova (Trentino, Italian Alps). Geoderma 111:99-21 CrossRef
    8. Eskelinen A, Stark S, Mannisto M (2009) Links between plant community composition, soil organic matter quality and microbial communities in contrasting tundra habitats. Oecologia 161:113-23 CrossRef
    9. FAL (1998) Methodenbuch für Boden-, Pflanzen- und Lysimeterwasseruntersuchungen. Eidgen?ssische Forschungsanstalt für Agrar?kologie und Landbau. Schriftenreihe der FAL, 27, Zurich, Switzerland
    10. Guggenberger G, Glaser B, Zech W (1994) Heavy-metal binding by hydrophobic and hydrophilic dissolved organic carbon fractions in a Spodosol-A and Spodosol-B horizon. Water Air Soil Pollut 72:111-27 CrossRef
    11. Harkness DD, Harrison AF, Bacon PJ (1986) The temporal distribution of bomb C-14 in a forest soil. Radiocarbon 28:328-37
    12. Hobbie SE, Schimel JP, Trumbore SE, Randerson JR (2000) Controls over carbon storage and turnover in high-latitude soils. Glob Change Biol 6:196-10 CrossRef
    13. Kaiser K, Guggenberger G (2007) Sorptive stabilization of organic matter by microporous goethite: sorption into small pores vs. surface complexation. Eur J Soil Sci 58:45-9 CrossRef
    14. Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277-04 CrossRef
    15. Kleeberg R, Monecke T, Hillier S (2008) Preferred orientation of mineral grains in sample mounts for quantitative XRD measurements: how random are powder samples? Clays Clay Miner 56:404-15 CrossRef
    16. K?rner C (2003) Alpine plant life. Springer, Heidelberg CrossRef
    17. Kramer MG, Sollins P, Sletten RS, Swart PK (2003) N isotope fractionation and measures of organic matter alteration during decomposition. Ecology 84:2021-025 CrossRef
    18. Leifeld J, Fuhrer J (2009) Long-term management effects on soil organic matter in two cold, high-elevation grasslands: clues from fractionation and radiocarbon dating. Eur J Soil Sci 60:230-39 CrossRef
    19. Leifeld J, Zimmermann M, Fuhrer J (2008) Simulating decomposition of labile soil organic carbon: effects of pH. Soil Biol Biochem 40:2948-951 CrossRef
    20. Leifeld J, Zimmermann M, Fuhrer J, Conen F (2009) Storage and turnover of carbon in grassland soils along an elevation gradient in the Swiss Alps. Glob Change Biol 15:668-79 CrossRef
    21. Levin I, Kromer B (2004) The tropospheric (CO2)–C-14 level in mid-latitudes of the Northern Hemisphere (1959-003). Radiocarbon 46:1261-272
    22. Mikutta R, Schaumann GE, Gildemeister D, Bonneville S, Kramer MG, Chorover J, Chadwick OA, Guggenberger G (2009) Biogeochemistry of mineral–organic associations across a long-term mineralogical soil gradient (0.3-100?kyr), Hawaiian Islands. Geochim Cosmochim Acta 73:2034-060 CrossRef
    23. Neff JC, Townsend AR, Gleixner G, Lehman SJ, Turnbull J, Bowman WD (2002) Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature 419:915-17 CrossRef
    24. Nilsson MC, Wardle DA, Zackrisson O, Jaderlund A (2002) Effects of alleviation of ecological stresses on an alpine tundra community over an eight-year period. Oikos 97:3-7 CrossRef
    25. Pietri JCA, Brookes PC (2008) Nitrogen mineralisation along a pH gradient of a silty loam UK soil. Soil Biol Biochem 40:797-02 CrossRef
    26. Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269:341-56 CrossRef
    27. Scheel T, Dorfler C, Kalbitz K (2007) Precipitation of dissolved organic matter by aluminum stabilizes carbon in acidic forest soils. Soil Sci Soc Am J 71:64-4
    28. Seeber J, Langel R, Meyer E, Traugott M (2009) Dwarf shrub litter as a food source for macro-decomposers in alpine pastureland. Appl Soil Ecol 41:178-84 CrossRef
    29. Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Waldrop MP, Wallenstein MD, Zak DR, Zeglin LH (2008) Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11:1252-264
    30. Sj?gersten-Turner S, Alewell C, Cécillon L, Hagedorn F, Jandl R, Leifeld J, Martinsen V, Schindlbacher A, Sebastià M-T, Van Miegroet H (2011) Mountain soils in a changing climate -vulnerability of carbon stocks and ecosystem feedbacks. In: Jandl R, Rodeghiero M, Olsson M (eds) Soil carbon in sensitive European ecosystems. From science to land management. Wiley-Blackwell, pp 118-48
    31. Spiegelberger T, Hegg O, Matthies D, Hedlund K, Schaffner U (2006) Long-term effects of short-term perturbation in a subalpine grassland. Ecology 87:1939-944 CrossRef
    32. Stuiver M, Polach HA (1977) Reporting of C-14 data—discussion. Radiocarbon 19:355-63
    33. Stuiver M, Reimer PJ, Braziunas TF (1998) High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40:1127-151
    34. Synal HA, Stocker M, Suter M (2007) MICADAS: a new compact radiocarbon AMS system. Nucl Instrum Methods Phys Res B 259:7-3 CrossRef
    35. Tiessen H, Karamanos RE, Stewart JWB, Selles F (1984) Natural N-15 abundance as an indicator of soil organic-matter transformations in native and cultivated soils. Soil Sci Soc Am J 48:312-15 CrossRef
    36. Torn MS, Swanston CW, Castanha C, Trumbore SE (2009) Storage and turnover of organic matter in soil. In: Senesi N, Xing B, Huang PM (eds) Biophysico–chemical processes involving natural nonliving organic matter in environmental systems. Wiley, New York, pp 219-72 CrossRef
    37. Townsend AR, Vitousek PM, Trumbore SE (1995) Soil organic-matter dynamics along gradients in temperature and land-use on the Island of Hawaii. Ecology 76:721-33 CrossRef
    38. Trumbore SE (1997) Potential responses of soil organic carbon to global environmental change. Proc Natl Acad Sci USA 94:8284-291 CrossRef
    39. Von Lützow M, K?gel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426-45 CrossRef
    40. Walse C, Berg B, Sverdrup H (1998) Review and synthesis of experimental data on organic matter decomposition with respect to the effect of temperature, moisture, and acidity. Environ Rev 6:25-0 CrossRef
    41. Wang L, Ouyang H, Zhou CP, Zhang F, Song MH, Tian YQ (2005) Soil organic matter dynamics along a vertical vegetation gradient in the Gongga Mountain on the Tibetan Plateau. J Integr Plant Biol 47:411-20 CrossRef
    42. Wang G, Li Y, Wang Y, Wu Q (2008) Effects of permafrost thawing on vegetation and soil carbon pool losses on the Qinghai-Tibet Plateau, China. Geoderma 143:143-52 CrossRef
    43. Yano Y, Shaver GR, Giblin AE, Rastetter EB (2010) Depleted 15N in hydrolysable-N of arctic soils and its implication for mycorrhizal fungi–plant interaction. Biogeochemistry 97:183-94 CrossRef
  • 作者单位:Jens Leifeld (1)
    Seraina Bassin (1)
    Franz Conen (2)
    Irka Hajdas (3)
    Markus Egli (4)
    Jürg Fuhrer (1)

    1. Agroscope Reckenholz-T?nikon Research Station ART, Air Pollution/Climate Group, Reckenholzstrasse 191, 8046, Zurich, Switzerland
    2. Institute for Environmental Geosciences, University of Basel, Bernoullistrasse 30, 4056, Basel, Switzerland
    3. Laboratory of Ion Beam Physics ETH, Schafmattstr. 20, 8093, Zurich, Switzerland
    4. Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
  • ISSN:1573-515X
文摘
Grasslands store substantial amounts of carbon in the form of organic matter in soil and roots. At high latitudes and elevation, turnover of these materials is slow due to various interacting biotic and abiotic constraints. Reliable estimates on the future of belowground carbon storage in cold grassland soils thus require quantitative understanding of these factors. We studied carbon turnover of roots, labile coarse particulate organic matter (cPOM) and older non-cPOM along a natural pH gradient (3.9-.9) in a subalpine grassland by utilizing soil fractionation and radiocarbon dating. Soil carbon stocks and root biomass, turnover, and decomposability did not scale with soil pH whereas mean residence times of both soil organic matter fractions significantly increased with declining pH. The effect was twice as strong for non-cPOM, which was also stronger enriched in 15N at low pH. Considering roots as important precursors for cPOM, the weaker soil pH effect on cPOM turnover may have been driven by comparably high root pH values. At pH?<?5, long non-cPOM mean residence times were probably related to pH dependent changes in substrate availability. Differences in turnover along the pH gradient were not reflected in soil carbon stocks because aboveground productivity was lower under acidic conditions and, in turn, higher inputs from aboveground plant residues compensated for faster soil carbon turnover at less acidic pH. In summary, the study provides evidence for a strong and differential regulatory role of pH on the turnover of soil organic matter that needs consideration in studies aiming to quantify effects of changing environmental conditions on belowground carbon storage.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700