Behavior of thin-walled circular hollow section stub columns under axial compression
详细信息    查看全文
文摘
Thin-walled steel circular hollow section (CHS) is widely used in wind turbine towers, where the tube is subjected to axial load combined with bending moment. Understanding the behavior of axially loaded thin-walled tubes with large diameter-to-thickness (D/t) ratios is crucial for the design of such structures. To investigate the behavior of axially loaded thin-walled circular hollow section steel tubes, 16 stub columns were tested with the D/t ratio ranging from 75 to 300. The experimental results showed that the compressive strength decreased sharply with the increase of the D/t ratio. The experimental result indicated that the tubes with smaller D/t ratios failed with outward deformation without visible local buckling. With the increase of the D/t ratio, local buckling appeared at the peak load. The finite element method was used to model the behavior of axially loaded stub columns. The experimental results were used to validate the accuracy of the finite element results. Based on the finite element model, the influences of the D/t ratio, the initial geometric deformation and the initial residual stress were analyzed. Design guidelines in Eurocode3, AISC-LRFD, AS4100 and S16-9 on thin-walled steel members were used to compare with the experimental and calculated results. Among them, the results based on AS4100 were the closest to the experimental results.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700