Analog quantum computing (AQC) and the need for time-symmetric physics
详细信息    查看全文
  • 作者:Paul J. Werbos ; Ludmilla Dolmatova
  • 关键词:Analog quantum computing ; Triphoton ; Quantum measurement ; Stochastic quantization ; Markov Random Fields ; Spintronics ; Polarizers ; Bell’s Theorem experiments
  • 刊名:Quantum Information Processing
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:15
  • 期:3
  • 页码:1273-1287
  • 全文大小:574 KB
  • 参考文献:1.Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A Math. Phys. Sci. 400(1818), 97–117 (1985)MathSciNet CrossRef MATH ADS
    2.Barron, Andrew R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inf. Theory 39(3), 930–945 (1993)MathSciNet CrossRef MATH
    3.Lloyd, S., Braunstein, S.L.: Quantum computation over continuous variables. Phys. Rev. Lett. 82, 1784–1787 (1999)MathSciNet CrossRef MATH ADS
    4.Kendon, V.M., Nemoto, K., Munro, W.J.: Quantum analogue computing. Philos. Trans. R. Soc. A 368, 3609–3620 (2010)MathSciNet CrossRef MATH ADS
    5.Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. J. Comput. Syst. Sci. 50(1), 132–150 (1995)MathSciNet CrossRef MATH
    6.Ezhov, A.A., Berman, G.P.: Introduction to Quantum Neural Technologies. Rinton Press, Princeton (2003)MATH
    7.Santoro, G.E., Tosatti, E.: Optimization using quantum mechanics: quantum annealing through adiabatic evolution. J. Phys. A 39, R393 (2006)MathSciNet CrossRef MATH ADS
    8.Werbos, P.J.: RLADP—foundations, common misconceptions, and the challenges ahead. In: Lewis, Frank L., Liu, D. (eds.) Reinforcement Learning and Approximate Dynamic Programming for Feedback Control. Wiley, Hoboken (2012)
    9.Werbos, P.J.: Approximate dynamic programming for real-time control and neural modeling. In: White, D., Sofge, D. (eds.) Handbook of Intelligent Control. Van Nostrand, New York (1992)
    10.Werbos, P.J.: How can we ever understand how the brain works? In: Kozma, R., Freeman, W.J. (eds.) Cognitive Phase Transitions in the Cerebral Cortex—Enhancing the Neuron Doctrine by Modeling Neural Fields, Springer Series: Studies in Systems, Decision and Control. Springer International Publ. AG, Cham (2015)
    11.Werbos, P.J.: Intelligence in the brain: a theory of how it works and how to build it. Neural Netw. 22(3), 200–212 (2009)CrossRef
    12.Bennett, C.H., Landauer, R.: The fundamental physical limits of computation. Sci. Am. 253(1), 48–56 (1985)CrossRef ADS
    13.Bouwmeester, D., Pan, J.W., Daniel, M., Weinfurter, H., Zeilinger, A.: Observation of three-photon. Phys. Rev. Lett. 82, 1345 (1999)MathSciNet CrossRef MATH ADS
    14.Werbos, P.: How to use memristors for more than just memory: how to use learning to expand applications. In: Kozma, R., Pino, R., Pazienza, G. (eds.) Advances in Neuromorphic Memristor Science and Applications. Springer, New York (2012)
    15.Werbos, P.J.: From ADP to the brain: foundations, roadmap, challenges and research priorities. In: Proceedings of the International Joint Conference on Neural Networks. IEEE, Beijing (2014)
    16.Werbos, P.J.: Bell’s theorem, many worlds and backwards-time physics: not just a matter of interpretation. Int. J. Theor. Phys. 47(11), 2862–2874 (2008)MathSciNet CrossRef MATH
    17.Walls, D.F., Gerard, J.M.: Quantum Optics. Springer, New York (2007)MATH
    18.Carmichael, H.: Statistical Methods in Quantum Optics 1: Master Equations and Fokker–Planck Equations. Springer, Berlin (1999)CrossRef MATH
    19.Werbos, P.J.: Example of lumped parameter modeling of a quantum optics circuit. In: SPIE Proceedings of Quantum Information and Computation XII, SPIE 9123-10 (2014)
    20.Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)CrossRef MATH
    21.Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275(5298), 350–356 (1997)MathSciNet CrossRef MATH
    22.Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464(7285), 45–53 (2010)CrossRef ADS
    23.Pittman, T.B., Shih, Y.H., Strekalov, D.V., Sergienko, A.V.: Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52(5), R3429 (1995)CrossRef ADS
    24.Awschalom, D.D. (ed.): Spin Electronics. Springer, New York (2004)
    25.Bose, R., Sridharan, D., Kim, H., Solomon, G.S., Waks, E.: Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. Phys. Rev. Lett. 108, 227402 (2012)CrossRef ADS
    26.Darankur, B., Verma, P.K.: The braided single-stage protocol for quantum-secure communication. In: SPIE Proceedings Quantum Information and Computation XII (2014)
    27.Lai, H., Orgun, M., Xue, L., Xiao, J., Pieprzyk, J.: Dual compressible hybrid quantum secret sharing schenes based on extended unitary operation. In: SPIE Proceedings of Quantum Information and Computation XII (2014)
    28.National Science Foundation: New lower-cost technology to produce many entangled photons and test their properties, ECCS1444491. http://​www.​nsf.​gov/​awardsearch/​showAward?​AWD_​ID=​1444491 (2014). Accessed 29 Sept 2015
    29.Peng, T., Shih, Y.: Simulation of Bell and GHZ states with thermal fields. In: Scully, M. (ed.) Princeton-TAMU Workshop on Classical-Quantum Interface, Princeton, May 27–29 (2015)
    30.Werbos, P. J.: Time-symmetric physics: a radical approach to the decoherence problem. In: Steck, J., Behrman, E. (eds.) Proceedings of the workshop on Quantum Computing of the conference Pacific Rim Artificial Intelligence (PIRCAI) (2014). Also posted at arXiv:​1501.​00027 with links to audio and slides
    31.Werbos, P.J.: Extension of the Glauber–Sudarshan mapping for classical and quantum energy spectra. Int. IFNA-ANS J. Probl. Nonlinear Anal. Eng. Syst. 20, 1–10 (2014)
    32.Werbos,P.J.: Local realistic model of Bell Theorem experiment and alternative model of quantum measurement. arXiv:​1403.​0469
    33.Werbos, P.J.: Stochastic path model of polaroid polarizer for Bell’s Theorem and triphoton experiments. Int. J. Bifurc. Chaos 25(3), 1550046 (2015)MathSciNet CrossRef
    34.Peng, T., et al.: Delayed-choice quantum eraser with thermal light. Phys. Rev. Lett. 112(18), 180401 (2014)CrossRef ADS
    35.Strekalov, D.V., Erkmen, B.I., Yu, N.: Ghost imaging of space objects. J. Phys. Conf. Ser. 414(1). IOP Publishing. http://​iopscience.​iop.​org/​1742-6596/​414/​1/​012037/​pdf/​1742-6596_​414_​1_​012037.​pdf (2013)
    36.Carmichael, H.J.: Statistical Methods in Quantum Optics 2: Non-classical Fields. Springer, New York (2009)
    37.Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control, Revised Ed. Holden-Day, San Francisco (1976)MATH
    38.El-Karoui, N., Mazliak, L. (eds.): Backward Stochastic Differential Equations. Addison-Wesley Longman, Boston (1997)MATH
    39.Clauser, J.F., Shimony, A.: Bell’s theorem. Experimental tests and implications. Rep. Prog. Phys. 41(12), 1881–1927 (1978)CrossRef ADS
    40.Datta, S.: Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28(4), 253–278 (2000)CrossRef ADS
  • 作者单位:Paul J. Werbos (1)
    Ludmilla Dolmatova (2)

    1. Department of Mathematics, Center for Large-Scale Complex Systems and Integrated Optimization Networks, University of Memphis, Memphis, TN, 38152, USA
    2. IntControl LLC, Arlington, VA, 22203, USA
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Physics
    Mathematics
    Engineering, general
    Computer Science, general
    Characterization and Evaluation Materials
  • 出版者:Springer Netherlands
  • ISSN:1573-1332
文摘
This paper discusses what will be necessary to achieve the full potential capabilities of analog quantum computing (AQC), which is defined here as the enrichment of continuous-variable computing to include stochastic, nonunitary circuit elements such as dissipative spin gates and address the wider range of tasks emerging from new trends in engineering, such as approximation of stochastic maps, ghost imaging and new forms of neural networks and intelligent control. This paper focuses especially on what is needed in terms of new experiments to validate remarkable new results in the modeling of triple entanglement, and in creating a pathway which links fundamental theoretical work with hard core experimental work, on a pathway to AQC similar to the pathway to digital quantum computing already blazed by Zeilinger’s group. It discusses the most recent experiments and reviews two families of alternative models based on the traditional eigenvector projection model of polarizers and on a new family of local realistic models based on Markov Random Fields across space–time adhering to the rules of time-symmetric physics. For both families, it reviews lumped parameter versions, continuous time extension and possibilities for extension to continuous space and time.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700