Representative locations from time series of soil water content using time stability and wavelet analysis
详细信息    查看全文
  • 作者:Diego Rivera (1)
    Mario Lillo (2)
    Stalin Granda (3)
  • 关键词:Time stability ; Soil water content ; Time series analysis ; Wavelet filtering
  • 刊名:Environmental Monitoring and Assessment
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:186
  • 期:12
  • 页码:9075-9087
  • 全文大小:2,247 KB
  • 参考文献:1. Ahmad, M., Bastiaanssen, W., & Feddes, R. (2002). Sustainable use of groundwater for irrigation: a numerical analysis of the subsoil water fluxes. / Irrigation and Drainage, 51(3), 227鈥?41. CrossRef
    2. Baroni, G., Ortuani, B., Facchi, A., & Gandolfi, C. (2013). The role of vegetation and soil properties on the spatio-temporal variability of the surface soil moisture in a maize-cropped field. / Journal of Hydrology, 489, 148鈥?59. CrossRef
    3. Biswas, A., (2011). Multi-scale controls on spatial patterns of soil water storage in the hummocky regions of North America. PhD thesis, Department of Soil Science, University of Saskatchewan.
    4. Biswas, T., Edraki, M., Adams, A. C., Schrale, G., 2005. Real -time drainage fluxes from the root zone by using capacitance probe data. In Irrigation 2005 Conference, Townsville, PO Box 978, Townsville QLD 4810.
    5. Blume, T., Zehe, E., & Bronstert, A. (2009). Use of soil moisture dynamics and patterns at different spatiotemporal scales for the investigation of subsurface flow processes. / Hydrology and Earth System Sciences, 13(7), 1215鈥?233. CrossRef
    6. Bogena, H., Huisman, J., Oberd枚rster, C., & Vereecken, H. (2007). Evaluation of a low-cost soil water content sensor for wireless network applications. / Journal of Hydrology, 344(1鈥?), 32鈥?2. CrossRef
    7. Brocca, L., Melone, F., Moramarco, T., & Morbidelli, R. (2009). Soil moisture temporal stability over experimental areas in central Italy. / Geoderma, 148(3鈥?), 364鈥?74. CrossRef
    8. Brocca, L., Melone, F., Moramarco, T., & Morbidelli, R. (2010). Spatial-temporal variability of soil moisture and its estimation across scales. / Water Resources Research, 46(2), W02516. CrossRef
    9. Brocca, L., Tullo, T., Melone, F., Moramarco, T., & Morbidelli, R. (2012). Catchment scale soil moisture spatial鈥搕emporal variability. / Journal of Hydrology, 422鈥?23, 63鈥?5. CrossRef
    10. Chen, Y. (2006). Letter to the editor on 鈥淩ank stability or temporal stability鈥? / Soil Science Society of America Journal, 70(1), 306. CrossRef
    11. Cosh, M. H., Evett, S. R., & McKee, L. (2012). Surface soil water content spatial organization within irrigated and non-irrigated agricultural fields. / Advances in Water Resources, 50, 55鈥?1. CrossRef
    12. Evett, S., Heng, L., Moutonnet, P., and Nguyen, M. (2008). Field estimation of soil water content: a practical guide to methods, instrumentation and sensor technology. Number 30 in IAEA-TCS. International Atomic Energy Agency.
    13. Fares, A., & Alva, A. (2000). Soil water components based on capacitance probes in a sandy soil. / Soil Science Society of America Journal, 64(1), 311鈥?18. CrossRef
    14. Gao, L., & Shao, M. (2012). Temporal stability of soil water storage in diverse soil layers. / Catena, 95, 24鈥?2. CrossRef
    15. Gao, X., Wu, P., Zhao, X., Shi, Y., & Wang, J. (2011). Estimating spatial mean soil water contents of sloping jujube orchards using temporal stability. / Agricultural Water Management, 102(1), 66鈥?3. CrossRef
    16. Granda, S., Rivera, D, Arum铆, J. L. and Sandoval, M. 2013. Monitoreo continuo de humedad con fines hidrol贸gicos. Tecnolog铆a y Ciencias del Agua (in press).
    17. Guber, A., Gish, T., Pachepsky, Y., van Genuchten, M., Daughtry, C., Nicholson, T., & Cady, R. (2008). Temporal stability in soil water content patterns across agricultural fields. / Catena, 73(1), 125鈥?33002E. CrossRef
    18. Guber, A., Gish, T., Pachepsky, Y., McKee, L., Nicholson, T., & Cady, R. (2011). Event-based estimation of water budget components using a network of multi-sensor capacitance probes. / Hydrological Sciences Journal, 56(7), 1227鈥?241. CrossRef
    19. Hu, W., Biswas, A., & Si, B. C. (2014). Application of multivariate empirical mode decomposition for revealing scale-and season-specific time stability of soil water storage. / Catena, 113, 377鈥?85.
    20. Hu, W., Shao, M., Wang, Q., & Reichardt, K. (2009). Time stability of soil water storage measured by neutron probe and the effects of calibration procedures in a small watershed. / Catena, 79(1), 72鈥?2. CrossRef
    21. Kachanoski, R., & De Jong, E. (1988). Scale dependence and the temporal persistence of spatial patterns. / Water Resources Research, 24(1), 85鈥?1. CrossRef
    22. Kumar, P., & Foufoula鈥怗eorgiou, E. (1997). Wavelet analysis for geophysical applications. / Reviews of Geophysics, 35(4), 385鈥?12. CrossRef
    23. Langohr, R. (1971). The volcanic ash soils of the Central Valley of central Chile. / P茅dologie, 3, 259鈥?93.
    24. Lau, K. M., & Weng, H. (1995). Climate signal detection using wavelet transform: how to make a time series sing. / Bulletin of the American Meteorological Society, 76(12), 2391鈥?402. CrossRef
    25. Lauzon, N., Anctil, F., & Petrinovic, J. (2004). Characterization of soil moisture conditions at temporal scales from a few days to annual. / Hydrological Processes, 18(17), 3235鈥?254. CrossRef
    26. Mallat, S. (1999). / A wavelet tour of signal processing. San Diego, CA: Academic.
    27. Manns, H. R., Berg, A. A., Bullock, P. R., & McNairn, H. (2014). Impact of soil surface characteristics on soil water content variability in agricultural fields. / Hydrological Processes, 28, 4340鈥?351.
    28. Martinez, G., Pachepsky, Y. A., Vereecken, H., Hardelauf, H., Herbst, M., & Vanderlinden, K. (2013). Modeling local control effects on the temporal stability of soil water content. / Journal of Hydrology, 481, 106鈥?18. CrossRef
    29. Mart铆nez, G., Pachepsky, Y. A., & Vereecken, H. (2014). Temporal stability of soil water content as affected by climate and soil hydraulic properties: a simulation study. / Hydrological Processes, 28(4), 1899鈥?915. CrossRef
    30. Mart铆nez-Fern谩ndez, J., & Ceballos, A. (2005). Mean soil moisture estimation using temporal stability analysis. / Journal of Hydrology, 312(1), 28鈥?8.
    31. Rivera, D., Granda, S., Arum铆, J. L., & Sandoval, M. (2011). A methodology to identify representative configurations of sensors for monitoring soil moisture. / Environmental Monitoring and Assessment, 184(11), 6563鈥?574. CrossRef
    32. Rivera, D., Lillo, M., Uvo, C. B., Billib, M., & Arum铆, J. L. (2012). Forecasting monthly precipitation in Central Chile: a self-organizing map approach using filtered sea surface temperature. / Theoretical and Applied Climatology, 107(1鈥?), 1鈥?3.
    33. Rolston, D. E., Biggar, J. W., & Nightingale, H. I. (1991). Temporal persistence of spatial soil-water patterns under trickle irrigation. / Irrigation Science, 12(4), 181鈥?86. CrossRef
    34. Rosenbaum, U., Huisman, J., Weuthen, A., Vereecken, H., & Bogena, H. (2010). Sensor-to-sensor variability of the ECH2O EC-5, TE, and 5TE sensors in dielectric liquids. / Vadose Zone Journal, 9(1), 181. CrossRef
    35. Schaefli, B., & Zehe, E. (2009). Hydrological model performance and parameter estimation in the wavelet domain. / Hydrology and Earth System Sciences, 13(10), 1921鈥?936. CrossRef
    36. Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. / Bulletin of the American Meteorological Society, 79(1), 61鈥?8. CrossRef
    37. Vachaud, G., Passerat De Silans, A., Balabanis, P., & Vauclin, M. (1985). Temporal stability of spatially measured soil water probability density function. / Soil Science Society of America Journal, 49(4), 828. CrossRef
    38. Vanderlinden, K., Vereecken, H., Hardelauf, H., Herbst, M., Mart铆nez, G., Cosh, M. H., & Pachepsky, Y. A. (2012). Temporal stability of soil water contents: a review of data and analyses. / Vadose Zone Journal, 11(4).
    39. Vera, J., Mounzer, O., Ruiz-S谩nchez, M., Abrisqueta, I., Tapia, L., & Abrisqueta, J. (2009). Soil water balance trial involving capacitance and neutron probe measurements. / Agricultural Water Management, 96(6), 905鈥?11. CrossRef
    40. Vereecken, H., Huisman, J., Bogena, H., Vanderborght, J., Vrugt, J., & Hopmans, J. (2008). On the value of soil moisture measurements in vadose zone hydrology: a review. / Water Resources Research, 44, W00D06.
    41. Yevjevich, V. (1972). / Stochastic process in hydrology. Fort Collins, Colorado: Water Resources.
  • 作者单位:Diego Rivera (1)
    Mario Lillo (2)
    Stalin Granda (3)

    1. Department of Water Resources, Laboratory of Comparative Policies in Water Resources CONICYT/FONDAP-15130015, University of Concepci贸n, Chill谩n, Chile
    2. Department of Mechanization and Energy, University of Concepci贸n, Chill谩n, Chile
    3. Departamento de Ciencias de la Vida, Universidad de las Fuerzas Armadas鈥揈SPE, Sangolqu铆, Ecuador
  • ISSN:1573-2959
文摘
The concept of time stability has been widely used in the design and assessment of monitoring networks of soil moisture, as well as in hydrological studies, because it is as a technique that allows identifying of particular locations having the property of representing mean values of soil moisture in the field. In this work, we assess the effect of time stability calculations as new information is added and how time stability calculations are affected at shorter periods, subsampled from the original time series, containing different amounts of precipitation. In doing so, we defined two experiments to explore the time stability behavior. The first experiment sequentially adds new data to the previous time series to investigate the long-term influence of new data in the results. The second experiment applies a windowing approach, taking sequential subsamples from the entire time series to investigate the influence of short-term changes associated with the precipitation in each window. Our results from an operating network (seven monitoring points equipped with four sensors each in a 2-ha blueberry field) show that as information is added to the time series, there are changes in the location of the most stable point (MSP), and that taking the moving 21-day windows, it is clear that most of the variability of soil water content changes is associated with both the amount and intensity of rainfall. The changes of the MSP over each window depend on the amount of water entering the soil and the previous state of the soil water content. For our case study, the upper strata are proxies for hourly to daily changes in soil water content, while the deeper strata are proxies for medium-range stored water. Thus, different locations and depths are representative of processes at different time scales. This situation must be taken into account when water management depends on soil water content values from fixed locations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700