Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5–B9) to the forebrain and brainstem
详细信息    查看全文
  • 作者:Aude Muzerelle ; Sophie Scotto-Lomassese…
  • 关键词:Genetic mouse models ; Anatomical tract ; tracing ; GFP ; SERT ; Serotonin ; Tegmental nucleus ; Pearson correlation ; Olfactory bulb ; Habenula ; Prefrontal cortex ; Median raphe ; Dorsal raphe ; Hippocampus ; Amygdala ; Axon tracing ; AAV
  • 刊名:Brain Structure and Function
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:221
  • 期:1
  • 页码:535-561
  • 全文大小:12,166 KB
  • 参考文献:Abraham U, Prior JL, Granados-Fuentes D, Piwnica-Worms DR, Herzog ED (2005) Independent circadian oscillations of Period1 in specific brain areas in vivo and in vitro. J Neurosci 25:8620–8626. doi:10.​1523/​JNEUROSCI.​2225-05.​2005 CrossRef PubMed
    Alonso A et al (2012) Development of the serotonergic cells in murine raphe nuclei and their relations with rhombomeric domains. Brain Struct Funct 218:1229–1277. doi:10.​1007/​s00429-012-0456-8 PubMedCentral CrossRef PubMed
    Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179:641–667. doi:10.​1002/​cne.​901790311 CrossRef PubMed
    Bach-Mizrachi H, Underwood MD, Tin A, Ellis SP, Mann JJ, Arango V (2008) Elevated expression of tryptophan hydroxylase-2 mRNA at the neuronal level in the dorsal and median raphe nuclei of depressed suicides. Mol Psychiatry 13(507–513):465. doi:10.​1038/​sj.​mp.​4002143 CrossRef
    Baker KG, Halliday GM, Halasz P, Hornung JP, Geffen LB, Cotton RG, Tork I (1991) Cytoarchitecture of serotonin-synthesizing neurons in the pontine tegmentum of the human brain. Synapse 7:301–320. doi:10.​1002/​syn.​890070407 CrossRef PubMed
    Bang SJ, Commons KG (2012) Forebrain GABAergic projections from the dorsal raphe nucleus identified by using GAD67-GFP knock-in mice. J Comp Neurol 520:4157–4167. doi:10.​1002/​cne.​23146 PubMedCentral CrossRef PubMed
    Bang SJ, Jensen P, Dymecki SM, Commons KG (2011) Projections and interconnections of genetically defined serotonin neurons in mice. Eur J Neurosci 35:85–96. doi:10.​1111/​j.​1460-9568.​2011.​07936 PubMedCentral CrossRef PubMed
    Beaudet A, Descarries L (1981) The fine structure of central serotonin neurons. J Physiol (Paris) 77:193–203
    Bobillier P, Pettijean F, Salvert D, Ligier M, Seguin S (1975) Differential projections of the nucleus raphe dorsalis and nucleus raphe centralis as revealed by autoradiography. Brain Res 85:205–210CrossRef PubMed
    Bobillier P, Seguin S, Petitjean F, Salvert D, Touret M, Jouvet M (1976) The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res 113:449–486 (0006-8993(76)90050-0 [pii])CrossRef PubMed
    Bobillier P, Seguin S, Degueurce A, Lewis BD, Pujol JF (1979) The efferent connections of the nucleus raphe centralis superior in the rat as revealed by radioautography. Brain Res 166:1–8 (0006-8993(79)90644-9 [pii])CrossRef PubMed
    Bonnavion P, Bernard JF, Hamon M, Adrien J, Fabre V (2010) Heterogeneous distribution of the serotonin 5-HT(1A) receptor mRNA in chemically identified neurons of the mouse rostral brainstem: Implications for the role of serotonin in the regulation of wakefulness and REM sleep. J Comp Neurol 518:2744–2770. doi:10.​1002/​cne.​22331 PubMed
    Calizo L et al (2011) Raphe serotonin neurons are not homogenous: Electrophysiological, morphological and neurochemical evidence. Neuropharmacology 61:524–543PubMedCentral CrossRef PubMed
    Commons KG (2008) Evidence for topographically organized endogenous 5-HT-1A receptor-dependent feedback inhibition of the ascending serotonin system. Eur J Neurosci 27:2611–2618. doi:10.​1111/​j.​1460-9568.​2008.​06235.​x PubMedCentral CrossRef PubMed
    Corthell JT, Stathopoulos AM, Watson CC, Bertram R, Trombley PQ (2013) Olfactory bulb monoamine concentrations vary with time of day. Neuroscience 247:234–241. doi:10.​1016/​j.​neuroscience.​2013.​05.​040 PubMedCentral CrossRef PubMed
    Crawford LK, Craige CP, Beck SG (2010) Increased intrinsic excitability of lateral wing serotonin neurons of the dorsal raphe: a mechanism for selective activation in stress circuits. J Neurophysiol 103:2652–2663PubMedCentral CrossRef PubMed
    Dahlstrom A, Fuxe K (1964) Localization of monoamines in the lower brain stem. Experientia 20:398–399CrossRef PubMed
    Datiche F, Luppi PH, Cattarelli M (1995) Serotonergic and non-serotonergic projections from the raphe nuclei to the piriform cortex in the rat: a cholera toxin B subunit (CTb) and 5-HT immunohistochemical study. Brain Res 671:27–37 (0006-8993(94)01293-Q [pii])CrossRef PubMed
    Descarries L, Watkins KC, Garcia S, Beaudet A (1982) The serotonin neurons in nucleus raphe dorsalis of adult rat: a light and electron microscope radioautographic study. J Comp Neurol 207:239–254. doi:10.​1002/​cne.​902070305 CrossRef PubMed
    Donovan S, Mamounas L, Andrews A, Blue M, McCasland J (2002) GAP-43 is critical for normal development of the serotonergic innervation in forebrain. J Neurosci 22:3543PubMed
    Fallon JH, Loughlin SE (1982) Monoamine innervation of the forebrain: collateralization. Brain Res Bull 9:295–307CrossRef PubMed
    Fuxe K et al (2010) The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog Neurobiol 90:82–100. doi:10.​1016/​j.​pneurobio.​2009.​10.​012 CrossRef PubMed
    Gagnon D, Parent M (2014) Distribution of VGLUT3 in highly collateralized axons from the rat dorsal raphe nucleus as revealed by single-neuron reconstructions. PLoS One 9:e87709. doi:10.​1371/​journal.​pone.​0087709 PubMedCentral CrossRef PubMed
    Gaspar P, Lillesaar C (2012) Probing the diversity of serotonin neurons. Philos Trans R Soc Lond B Biol Sci 367:2382–2394. doi:10.​1098/​rstb.​2011.​0378
    Hale MW, Lowry CA (2011) Functional topography of midbrain and pontine serotonergic systems: implications for synaptic regulation of serotonergic circuits. Psychopharmacology 213:243–264. doi:10.​1007/​s00213-010-2089-z CrossRef PubMed
    Hale MW, Johnson PL, Westerman AM, Abrams JK, Shekhar A, Lowry CA (2011) Multiple anxiogenic drugs recruit a parvalbumin-containing subpopulation of GABAergic interneurons in the basolateral amygdala. Prog Neuropsychopharmacol Biol Psychiatry 34:1285–1293. doi:10.​1016/​j.​pnpbp.​2010.​07.​012 CrossRef
    Hendricks T et al (2003) Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37:233–247CrossRef PubMed
    Hikosaka O (2010) The habenula: from stress evasion to value-based decision-making. Nat Rev Neurosci 11:503–513. doi:10.​1038/​nrn2866 PubMedCentral CrossRef PubMed
    Hioki H et al (2009) Vesicular glutamate transporter 3-expressing nonserotonergic projection neurons constitute a subregion in the rat midbrain raphe nuclei. J Comp Neurol 518:668–686CrossRef
    Hsu YW, Tempest L, Quina LA, Wei AD, Zeng H, Turner EE (2013) Medial habenula output circuit mediated by alpha5 nicotinic receptor-expressing GABAergic neurons in the interpeduncular nucleus. J Neurosci 33:18022–18035. doi:10.​1523/​JNEUROSCI.​2927-13.​2013 PubMedCentral CrossRef PubMed
    Imai H, Steindler DA, Kitai ST (1986) The organization of divergent axonal projections from the midbrain raphe nuclei in the rat. J Comp Neurol 243:363–380. doi:10.​1002/​cne.​902430307 CrossRef PubMed
    Ishimura K, Takeuchi Y, Fujiwara K, Tominaga M, Yoshioka H, Sawada T (1988) Quantitative analysis of the distribution of serotonin-immunoreactive cell bodies in the mouse brain. Neurosci Lett 91:265–270CrossRef PubMed
    Jackson J, Bland BH, Antle MC (2009) Nonserotonergic projection neurons in the midbrain raphe nuclei contain the vesicular glutamate transporter VGLUT3. Synapse 63:31–41. doi:10.​1002/​syn.​20581 CrossRef PubMed
    Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72:165–229PubMed
    Jacobs BL, Wise WD, Taylor KM (1974) Differential behavioral and neurochemical effects following lesions of the dorsal or median raphe nuclei in rats. Brain Res 79:353–361 (0006-8993(74)90433-8 [pii])CrossRef PubMed
    Jacobs BL, Foote SL, Bloom FE (1978) Differential projections of neurons within the dorsal raphe nucleus of the rat: a horseradish peroxidase (HRP) study. Brain Res 147:149–153 (0006-8993(78)90779-5 [pii])CrossRef PubMed
    Jensen P, Farago AF, Awatramani RB, Scott MM, Deneris ES, Dymecki SM (2008) Redefining the serotonergic system by genetic lineage. Nat Neurosci 11:417–419. doi:10.​1038/​nn2050 PubMedCentral CrossRef PubMed
    Jones BE, Cuello AC (1989) Afferents to the basal forebrain cholinergic cell area from pontomesencephalic–catecholamine, serotonin, and acetylcholine—neurons. Neuroscience 31:37–61CrossRef PubMed
    Katori S et al (2009) Protocadherin-alpha family is required for serotonergic projections to appropriately innervate target brain areas. J Neurosci 29:9137–9147. doi:10.​1523/​JNEUROSCI.​5478-08.​2009 CrossRef PubMed
    Kim MA, Lee HS, Lee BY, Waterhouse BD (2004) Reciprocal connections between subdivisions of the dorsal raphe and the nuclear core of the locus coeruleus in the rat. Brain Res 1026:56–67. doi:10.​1016/​j.​brainres.​2004.​08.​022 CrossRef PubMed
    Kiyasova V, Gaspar P (2011) Development of raphe serotonin neurons from specification to guidance. Eur J Neurosci 34:1553–1562. doi:10.​1111/​j.​1460-9568.​2011.​07910.​x CrossRef PubMed
    Kiyasova V, Fernandez SP, Laine J, Stankovski L, Muzerelle A, Doly S, Gaspar P (2011) A genetically defined morphologically and functionally unique subset of 5-HT neurons in the mouse raphe nuclei. J Neurosci 31:2756–2768. doi:10.​1523/​JNEUROSCI.​4080-10.​2011 CrossRef PubMed
    Kocsis B, Di Prisco GV, Vertes RP (2001) Theta synchronization in the limbic system: the role of Gudden’s tegmental nuclei. Eur J Neurosci 13:381–388 (ejn1392 [pii])PubMed
    Kocsis B, Varga V, Dahan L, Sik A (2006) Serotonergic neuron diversity: identification of raphe neurons with discharges time-locked to the hippocampal theta rhythm. Proc Natl Acad Sci USA 2006:1059–1064CrossRef
    Kohler C, Steinbusch H (1982) Identification of serotonin and non-serotonin-containing neurons of the mid
    ain raphe projecting to the entorhinal area and the hippocampal formation. A combined immunohistochemical and fluorescent retrograde tracing study in the rat brain. Neuroscience 7:951–975CrossRef PubMed
    Kohler C, Chan-Palay V, Steinbusch H (1982) The distribution and origin of serotonin-containing fibers in the septal area: a combined immunohistochemical and fluorescent retrograde tracing study in the rat. J Comp Neurol 209:91–111. doi:10.​1002/​cne.​902090109 CrossRef PubMed
    Kosofsky BE, Molliver ME (1987) The serotoninergic innervation of cerebral cortex: different classes of axon terminals arise from dorsal and median raphe nuclei. Synapse 1:153–168. doi:10.​1002/​syn.​890010204 CrossRef PubMed
    Lillesaar C (2011) The serotonergic system in fish. J Chem Neuroanat 41:294–308 (S0891-0618(11)00045-7 [pii])CrossRef PubMed
    Lillesaar C, Stigloher C, Tannhäuser B, Wullimann MF, Bally-Cuif L (2009) Axonal projections originating from raphe serotonergic neurons in the developing and adult zebrafish, Danio rerio, using transgenics to visualize raphe-specificpet1expression. J Comp Neurol 512:158–182. doi:10.​1002/​cne.​21887 CrossRef PubMed
    Lucki I (1998) The spectrum of behaviors influenced by serotonin. Biol Psychiatry 44:151–162CrossRef PubMed
    Ma PM, Beltz BS, Kravitz EA (1992) Serotonin-containing neurons in lobsters: their role as gain-setters in postural control mechanisms. J Neurophysiol 68:36–54PubMed
    Mamounas LA, Mullen CA, O’Hearn E, Molliver ME (1991) Dual serotoninergic projections to forebrain in the rat: morphologically distinct 5-HT axon terminals exhibit differential vulnerability to neurotoxic amphetamine derivatives. J Comp Neurol 314:558–586. doi:10.​1002/​cne.​903140312 CrossRef PubMed
    Narboux-Neme N, Pavone LM, Avallone L, Zhuang X, Gaspar P (2008) Serotonin transporter transgenic (SERTcre) mouse line reveals developmental targets of serotonin specific reuptake inhibitors (SSRIs). Neuropharmacology 55:994–1005. doi:10.​1016/​j.​neuropharm.​2008.​08.​020 CrossRef PubMed
    O’Hearn E, Molliver ME (1984) Organization of raphe-cortical projections in rat: a quantitative retrograde study. Brain Res Bull 13:709–726CrossRef PubMed
    Paxinos G, Franklin KBG (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego
    Petzold GC, Hagiwara A, Murthy VN (2009) Serotonergic modulation of odor input to the mammalian olfactory bulb. Nat Neurosci 12:784–791. doi:10.​1038/​nn.​2335 CrossRef PubMed
    Richter-Levin G, Segal M (1991) The effects of serotonin depletion and raphe grafts on hippocampal electrophysiology and behavior. J Neurosci 11:1585–1596PubMed
    Salas R, Sturm R, Boulter J, De Biasi M (2009) Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice. J Neurosci 29:3014–3018. doi:10.​1523/​JNEUROSCI.​4934-08.​2009 PubMedCentral CrossRef PubMed
    Scott MM, Krueger KC, Deneris ES (2005) A differentially autoregulated Pet-1 enhancer region is a critical target of the transcriptional cascade that governs serotonin neuron development. J Neurosci 25:2628–2636. doi:10.​1523/​JNEUROSCI.​4979-04.​2005 CrossRef PubMed
    Sego C, Goncalves L, Lima L, Furigo IC, Donato J Jr, Metzger M (2014) Lateral habenula and the rostromedial tegmental nucleus innervate neurochemically distinct subdivisions of the dorsal raphe nucleus in the rat. J Comp Neurol 522:1454–1484. doi:10.​1002/​cne.​23533 CrossRef PubMed
    Sourani D, Eitan R, Gordon N, Goelman G (2012) The habenula couples the dopaminergic and the serotonergic systems: application to depression in Parkinson’s disease. Eur J Neurosci 36:2822–2829. doi:10.​1111/​j.​1460-9568.​2012.​08200.​x CrossRef PubMed
    Spannuth BM, Hale MW, Evans AK, Lukkes JL, Campeau S, Lowry CA (2011) Investigation of a central nucleus of the amygdala/dorsal raphe nucleus serotonergic circuit implicated in fear-potentiated startle. Neuroscience 179:104–119. doi:10.​1016/​j.​neuroscience.​2011.​01.​042 PubMedCentral CrossRef PubMed
    Sperling R, Commons KG (2011) Shifting topographic activation and 5-HT1A receptor-mediated inhibition of dorsal raphe serotonin neurons produced by nicotine exposure and withdrawal. Eur J Neurosci 33:1866–1875. doi:10.​1111/​j.​1460-9568.​2011.​07677.​x PubMedCentral CrossRef PubMed
    Staubli U, Xu FB (1995) Effects of 5-HT3 receptor antagonism on hippocampal theta rhythm, memory, and LTP induction in the freely moving rat. J Neurosci 15:2445–2452PubMed
    Steinbusch HW (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience 6:557–618CrossRef PubMed
    Steinbusch HW, Nieuwenhuys R (1981) Localization of serotonin-like immunoreactivity in the central nervous system and pituitary of the rat, with special references to the innervation of the hypothalamus. Adv Exp Med Biol 133:7–35CrossRef PubMed
    Steinbusch HW, Nieuwenhuys R, Verhofstad AA, Van der Kooy D (1981) The nucleus raphe dorsalis of the rat and its projection upon the caudatoputamen. A combined cytoarchitectonic, immunohistochemical and retrograde transport study. J Physiol (Paris) 77:157–174
    Tong CK et al (2014) Axonal control of the adult neural stem cell niche. Cell Stem Cell 14:500–511 (S1934-5909(14)00015-0 [pii])PubMedCentral CrossRef PubMed
    Tork I (1990) Anatomy of the serotonergic system. Ann N Y Acad Sci 600(9–34):34–35
    Van Bockstaele EJ, Biswas A, Pickel VM (1993) Topography of serotonin neurons in the dorsal raphe nucleus that send axon collaterals to the rat prefrontal cortex and nucleus accumbens. Brain Res 624:188–198 (0006-8993(93)90077-Z [pii])CrossRef PubMed
    van der Kooy D, Hattori T (1980) Dorsal raphe cells with collateral projections to the caudate-putamen and substantia nigra: a fluorescent retrograde double labeling study in the rat. Brain Res 186:1–7 (0006-8993(80)90250-4 [pii])CrossRef PubMed
    Vann SD (2009) Gudden’s ventral tegmental nucleus is vital for memory: re-evaluating diencephalic inputs for amnesia. Brain 132:2372–2384. doi:10.​1093/​brain/​awp175 CrossRef PubMed
    Vann SD (2013) Dismantling the Papez circuit for memory in rats Elife 2:e00736. doi:10.​7554/​eLife.​0073600736 PubMed
    Vasudeva RK, Lin RC, Simpson KL, Waterhouse BD (2011) Functional organization of the dorsal raphe efferent system with special consideration of nitrergic cell groups. J Chem Neuroanat 41:281–293. doi:10.​1016/​j.​jchemneu.​2011.​05.​008 CrossRef PubMed
    Vertes RP (1991) A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat J Comp Neurol 313:643–668. doi:10.​1002/​cne.​903130409 PubMed
    Vertes RP, Crane AM (1997) Distribution, quantification, and morphological characteristics of serotonin-immunoreactive cells of the supralemniscal nucleus (B9) and pontomesencephalic reticular formation in the rat. J Comp Neurol 378:411–424. doi:10.​1002/​(SICI)1096-9861(19970217)378:​3<411:​AID-CNE8>3.​0.​CO;2-6 CrossRef PubMed
    Vertes RP, Fortin WJ, Crane AM (1999) Projections of the median raphe nucleus in the rat. J Comp Neurol 407:555–582. doi:10.​1002/​(SICI)1096-9861(19990517)407:​4<555:​AID-CNE7>3.​0.​CO;2-E CrossRef PubMed
    Waterhouse BD, Mihailoff GA, Baack JC, Woodward DJ (1986) Topographical distribution of dorsal and median raphe neurons projecting to motor, sensorimotor, and visual cortical areas in the rat. J Comp Neurol 249(460–476):478–481
    Zheng X, Chung S, Tanabe T, Sze JY (2005) Cell-type specific regulation of serotonergic identity by the C. elegans LIM-homeodomain factor LIM-4. Dev Biol 286:618–628. doi:10.​1016/​j.​ydbio.​2005.​08.​013 CrossRef PubMed
    Zheng PP, van der Weiden M, Kros JM (2014) Fast tracking of co-localization of multiple markers by using the nanozoomer slide scanner and NDPViewer. J Cell Physiol 229:967–973CrossRef PubMed
    Zhuang X, Masson J, Gingrich J, Rayport S, Hen R (2005) Targeted gene expression in dopamine and serotonin neurons of the mouse brain. J Neurosci Methods 143:27–32CrossRef PubMed
  • 作者单位:Aude Muzerelle (1) (2) (3)
    Sophie Scotto-Lomassese (1) (2) (3)
    Jean François Bernard (2) (4)
    Mariano Soiza-Reilly (1) (2) (3)
    Patricia Gaspar (1) (2) (3)

    1. Inserm UMR-S 839, 17 rue du Fer à Moulin, 75005, Paris, France
    2. Université Pierre et Marie Curie, Paris, France
    3. Institut du Fer à Moulin, Paris, France
    4. Inserm UMR- 894, Centre Psychiatrie St Anne, Paris, France
  • 刊物主题:Neurosciences; Cell Biology; Neurology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1863-2661
文摘
Serotoninergic innervation of the central nervous system is provided by hindbrain raphe nuclei (B1–B9). The extent to which each raphe subdivision has distinct topographic organization of their projections is still unclear. We provide a comprehensive description of the main targets of the rostral serotonin (5-HT) raphe subgroups (B5–B9) in the mouse brain. Adeno-associated viruses that conditionally express GFP under the control of the 5-HT transporter promoter were used to label small groups of 5-HT neurons in the dorsal (B7d), ventral (B7v), lateral (B7l), and caudal (B6) subcomponents of the dorsal raphe (DR) nucleus as well as in the rostral and caudal parts of the median raphe (MR) nucleus (B8 and B5, respectively), and in the supralemniscal (B9) cell group. We illustrate the distinctive and largely non-overlapping projection areas of these cell groups: for instance, DR (B7) projects to basal parts of the forebrain, such as the amygdala, whereas MR (B8) is the main 5-HT source to the hippocampus, septum, and mesopontine tegmental nuclei. Distinct subsets of B7 have preferential brain targets: B7v is the main source of 5-HT for the cortex and amygdala while B7d innervates the hypothalamus. We reveal for the first time the target areas of the B9 cell group, demonstrating projections to the caudate, prefrontal cortex, substantia nigra, locus coeruleus and to the raphe cell groups. The broad topographic organization of the different raphe subnuclei is likely to underlie the different functional roles in which 5-HT has been implicated in the brain. The present mapping study could serve as the basis for genetically driven specific targeting of the different subcomponents of the mouse raphe system. Keywords Genetic mouse models Anatomical tract-tracing GFP SERT Serotonin Tegmental nucleus Pearson correlation Olfactory bulb Habenula Prefrontal cortex Median raphe Dorsal raphe Hippocampus Amygdala Axon tracing AAV

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700