A systematic review of the use of expandable cages in the cervical spine
详细信息    查看全文
  • 作者:Benjamin D. Elder ; Sheng-Fu Lo ; Thomas A. Kosztowski…
  • 关键词:Expandable cage ; Vertebral body replacement ; Supplemental fixation ; Cervical corpectomy ; Biomechanics
  • 刊名:Neurosurgical Review
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:39
  • 期:1
  • 页码:1-11
  • 全文大小:595 KB
  • 参考文献:1.Alfieri A, Gazzeri R, Neroni M, Fiore C, Galarza M, Esposito S (2011) Anterior expandable cylindrical cage reconstruction after cervical spinal metastasis resection. Clin Neurol Neurosurg 113(10):914–917. doi:10.​1016/​j.​clineuro.​2011.​02.​023 PubMed CrossRef
    2.Arts MP, Peul WC (2008) Vertebral body replacement systems with expandable cages in the treatment of various spinal pathologies: a prospectively followed case series of 60 patients. Neurosurgery 63(3):537–544. doi:10.​1227/​01.​NEU.​0000325260.​00628.​DC , discussion 544–535 PubMed CrossRef
    3.Auguste KI, Chin C, Acosta FL, Ames CP (2006) Expandable cylindrical cages in the cervical spine: a review of 22 cases. J Neurosurg Spine 4(4):285–291. doi:10.​3171/​spi.​2006.​4.​4.​285 PubMed CrossRef
    4.Ayhan S, Palaoglu S, Geyik S, Saatci I, Onal MB (2014) Concomitant intramedullary arteriovenous malformation and a vertebral hemangioma of cervical spine discovered by a pathologic fracture during bicycle accident. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deformity So Eur Sect Cervical Spine Res Soc. doi:10.​1007/​s00586-014-3620-4
    5.Bogduk N, Mercer S (2000) Biomechanics of the cervical spine. I: Normal kinematics. Clin Biomech 15(9):633–648CrossRef
    6.Burkett CJ, Baaj AA, Dakwar E, Uribe JS (2012) Use of titanium expandable vertebral cages in cervical corpectomy. J Clin Neurosci Off J Neurosurg Soc Australas 19(3):402–405. doi:10.​1016/​j.​jocn.​2011.​07.​030
    7.Cabraja M, Abbushi A, Koeppen D, Kroppenstedt S, Woiciechowsky C (2010) Comparison between anterior and posterior decompression with instrumentation for cervical spondylotic myelopathy: sagittal alignment and clinical outcome. Neurosurg Focus 28(3):E15. doi:10.​3171/​2010.​1.​FOCUS09253 PubMed CrossRef
    8.Cabraja M, Abbushi A, Kroppenstedt S, Woiciechowsky C (2010) Cages with fixation wings versus cages plus plating for cervical reconstruction after corpectomy—is there any difference? Cen Eur Neurosurg 71(2):59–63. doi:10.​1055/​s-0029-1246135 CrossRef
    9.Chou D, Lu DC, Weinstein P, Ames CP (2008) Adjacent-level vertebral body fractures after expandable cage reconstruction. J Neurosurg Spine 8(6):584–588. doi:10.​3171/​SPI/​2008/​8/​6/​584 PubMed CrossRef
    10.Coumans JV, Marchek CP, Henderson FC (2002) Use of the telescopic plate spacer in treatment of cervical and cervicothoracic spine tumors. Neurosurgery 51(2):417–424, discussion 424–416 PubMed
    11.Cusick JF, Yoganandan N (2002) Biomechanics of the cervical spine 4: major injuries. Clin Biomech 17(1):1–20CrossRef
    12.Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV (2011) Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury 42(Suppl 2):S3–S15. doi:10.​1016/​j.​injury.​2011.​06.​015 PubMed CrossRef
    13.Eleraky M, Papanastassiou I, Tran ND, Dakwar E, Vrionis FD (2011) Comparison of polymethylmethacrylate versus expandable cage in anterior vertebral column reconstruction after posterior extracavitary corpectomy in lumbar and thoraco-lumbar metastatic spine tumors. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deformity Soc Eur Sect Cervical Spine Res Soc 20(8):1363–1370. doi:10.​1007/​s00586-011-1738-1 CrossRef
    14.Eleraky MA, Duong HT, Esp E, Kim KD (2011) Expandable versus nonexpandable cages for thoracolumbar burst fracture. World Neurosurg 75(1):149–154. doi:10.​1016/​j.​wneu.​2010.​09.​018 PubMed CrossRef
    15.Epstein NE (2012) Iliac crest autograft versus alternative constructs for anterior cervical spine surgery: Pros, cons, and costs. Surg Neurol Int 3(Suppl 3):S143–S156. doi:10.​4103/​2152-7806.​98575 PubMed PubMedCentral CrossRef
    16.Han YC, Liu ZQ, Wang SJ, Li LJ, Tan J (2014) Is anterior cervical discectomy and fusion superior to corpectomy and fusion for treatment of multilevel cervical spondylotic myelopathy? A systemic review and meta-analysis. PLoS One 9(1):e87191. doi:10.​1371/​journal.​pone.​0087191 PubMed PubMedCentral CrossRef
    17.Hasegawa K, Abe M, Washio T, Hara T (2001) An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density. Spine 26(8):957–963PubMed CrossRef
    18.Heneghan HM, McCabe JP (2009) Use of autologous bone graft in anterior cervical decompression: morbidity & quality of life analysis. BMC Musculoskelet Disord 10:158. doi:10.​1186/​1471-2474-10-158 PubMed PubMedCentral CrossRef
    19.Jost B, Cripton PA, Lund T, Oxland TR, Lippuner K, Jaeger P, Nolte LP (1998) Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deformity So Eur Sect Cervical Spine Res Soc 7(2):132–141CrossRef
    20.Kandziora F, Pflugmacher R, Schaefer J, Scholz M, Ludwig K, Schleicher P, Haas NP (2003) Biomechanical comparison of expandable cages for vertebral body replacement in the cervical spine. J Neurosurg 99(1 Suppl):91–97PubMed
    21.Kettler A, Wilke HJ, Claes L (2001) Effects of neck movements on stability and subsidence in cervical interbody fusion: an in vitro study. J Neurosurg 94(1 Suppl):97–107PubMed
    22.Koller H, Schmidt R, Mayer M, Hitzl W, Zenner J, Midderhoff S, Graf N, Resch H, Wilke HJ (2010) The stabilizing potential of anterior, posterior and combined techniques for the reconstruction of a 2-level cervical corpectomy model: biomechanical study and first results of ATPS prototyping. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deformity So Eur Sect Cervical Spine Res Soc 19(12):2137–2148. doi:10.​1007/​s00586-010-1503-x CrossRef
    23.Konig SA, Spetzger U (2014) Distractable titanium cages versus PEEK cages versus iliac crest bone grafts for the replacement of cervical vertebrae. Minim Invasive Ther Allied Technol MITAT Off J Soc Minim Invasive Ther 23(2):102–105. doi:10.​3109/​13645706.​2013.​854809 CrossRef
    24.Konig SA, Spetzger U (2014) Experience with a modular PEEK system for cervical vertebral body replacement. J Spinal Disord Tech. doi:10.​1097/​BSD.​0000000000000149​
    25.Lau D, Song Y, Guan Z, La Marca F, Park P (2013) Radiological outcomes of static vs expandable titanium cages after corpectomy: a retrospective cohort analysis of subsidence. Neurosurgery 72(4):529–539. doi:10.​1227/​NEU.​0b013e318282a558​ , discussion 528–529 PubMed CrossRef
    26.Lied B, Roenning PA, Sundseth J, Helseth E (2010) Anterior cervical discectomy with fusion in patients with cervical disc degeneration: a prospective outcome study of 258 patients (181 fused with autologous bone graft and 77 fused with a PEEK cage). BMC Surg 10:10. doi:10.​1186/​1471-2482-10-10 PubMed PubMedCentral CrossRef
    27.Lu DC, Wang V, Chou D (2009) The use of allograft or autograft and expandable titanium cages for the treatment of vertebral osteomyelitis. Neurosurgery 64(1):122–129. doi:10.​1227/​01.​NEU.​0000336332.​11957.​0B , discussion 129–130 PubMed CrossRef
    28.Mohammad-Shahi MH, Nikolaou VS, Giannitsios D, Ouellet J, Jarzem PF (2013) The effect of angular mismatch between vertebral endplate and vertebral body replacement endplate on implant subsidence. J Spinal Disord Tech 26(5):268–273. doi:10.​1097/​BSD.​0b013e3182425eab​ PubMed CrossRef
    29.Omeis I, Bekelis K, Gregory A, McGirt M, Sciubba D, Bydon A, Wolinsky JP, Gokaslan Z, Witham T (2010) The use of expandable cages in patients undergoing multilevel corpectomies for metastatic tumors in the cervical spine. Orthopedics 33(2):87–92. doi:10.​3928/​01477447-20100104-12 PubMed CrossRef
    30.Payer M (2006) Implantation of a distractible titanium cage after cervical corpectomy: technical experience in 20 consecutive cases. Acta Neurochir 148(11):1173–1180. doi:10.​1007/​s00701-006-0871-9 , discussion 1180 PubMed CrossRef
    31.Polikeit A, Ferguson SJ, Nolte LP, Orr TE (2003) Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deformity So Eur Sect Cervical Spine Res Soc 12(4):413–420. doi:10.​1007/​s00586-002-0505-8 CrossRef
    32.Sasani M, Ozer AF (2009) Single-stage posterior corpectomy and expandable cage placement for treatment of thoracic or lumbar burst fractures. Spine 34(1):E33–E40. doi:10.​1097/​BRS.​0b013e318189fcfd​ PubMed CrossRef
    33.Sciubba DM, Gallia GL, McGirt MJ, Woodworth GF, Garonzik IM, Witham T, Gokaslan ZL, Wolinsky JP (2007) Thoracic kyphotic deformity reduction with a distractible titanium cage via an entirely posterior approach. Neurosurgery 60(4 Suppl 2):223–230. doi:10.​1227/​01.​NEU.​0000255385.​18335.​A8 , discussion 230–221 PubMed
    34.Shen FH, Marks I, Shaffrey C, Ouellet J, Arlet V (2008) The use of an expandable cage for corpectomy reconstruction of vertebral body tumors through a posterior extracavitary approach: a multicenter consecutive case series of prospectively followed patients. Spine J Off J N Am Spine So 8(2):329–339. doi:10.​1016/​j.​spinee.​2007.​05.​002 CrossRef
    35.Singh K, Vaccaro AR, Kim J, Lorenz EP, Lim TH, An HS (2003) Biomechanical comparison of cervical spine reconstructive techniques after a multilevel corpectomy of the cervical spine. Spine 28(20):2352–2358. doi:10.​1097/​01.​BRS.​0000085344.​22471.​23 , discussion 2358 PubMed CrossRef
    36.Thongtrangan I, Balabhadra RS, Le H, Park J, Kim DH (2003) Vertebral body replacement with an expandable cage for reconstruction after spinal tumor resection. Neurosurg Focus 15(5):E8PubMed CrossRef
    37.Vaccaro AR, Falatyn SP, Scuderi GJ, Eismont FJ, McGuire RA, Singh K, Garfin SR (1998) Early failure of long segment anterior cervical plate fixation. J Spinal Disord 11(5):410–415PubMed CrossRef
    38.Viswanathan A, Abd-El-Barr MM, Doppenberg E, Suki D, Gokaslan Z, Mendel E, Rao G, Rhines LD (2012) Initial experience with the use of an expandable titanium cage as a vertebral body replacement in patients with tumors of the spinal column: a report of 95 patients. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deformity So Eur Sect Cervical Spine Res Soc 21(1):84–92. doi:10.​1007/​s00586-011-1882-7 CrossRef
    39.Waschke A, Kaczor S, Walter J, Duenisch P, Kalff R, Ewald C (2013) Expandable titanium cages for anterior column cervical reconstruction and their effect on sagittal profile: a review of 48 cases. Acta Neurochir 155(5):801–807. doi:10.​1007/​s00701-013-1655-7 , discussion 807 PubMed CrossRef
    40.Waschke A, Walter J, Duenisch P, Kalff R, Ewald C (2013) Anterior cervical intercorporal fusion in patients with osteoporotic or tumorous fractures using a cement augmented cervical plate system: first results of a prospective single-center study. J Spinal Disord Tech 26(3):E112–E117. doi:10.​1097/​BSD.​0b013e3182764b37​ PubMed CrossRef
    41.Wilke HJ, Kettler A, Goetz C, Claes L (2000) Subsidence resulting from simulated postoperative neck movements: an in vitro investigation with a new cervical fusion cage. Spine 25(21):2762–2770PubMed CrossRef
    42.Woiciechowsky C (2005) Distractable vertebral cages for reconstruction after cervical corpectomy. Spine 30(15):1736–1741PubMed CrossRef
    43.Xiao SW, Jiang H, Yang LJ, Xiao ZM (2014) Anterior cervical discectomy versus corpectomy for multilevel cervical spondylotic myelopathy: a meta-analysis. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deformity So Eur Sect Cervical Spine Res Soc. doi:10.​1007/​s00586-014-3607-1
    44.Yoganandan N, Pintar FA, Maiman DJ, Cusick JF, Sances A Jr, Walsh PR (1996) Human head-neck biomechanics under axial tension. Med Eng Phys 18(4):289–294PubMed CrossRef
    45.Zairi F, Aboukais R, Thines L, Allaoui M, Assaker R (2012) Relevance of expandable titanium cage for the treatment of cervical spondylotic myelopathy. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deformity So Eur Sect Cervical Spine Res Soc 21(8):1545–1550. doi:10.​1007/​s00586-012-2380-2 CrossRef
    46.Zhang HY, Thongtrangan I, Le H, Park J, Kim DH (2005) Expandable cage for cervical spine reconstruction. J Kor Neurosurg Soc 38:435–441
    47.Zhang Y, Quan Z, Zhao Z, Luo X, Tang K, Li J, Zhou X, Jiang D (2014) Evaluation of anterior cervical reconstruction with titanium mesh cages versus nano-hydroxyapatite/polyamide66 cages after 1- or 2-level corpectomy for multilevel cervical spondylotic myelopathy: a retrospective study of 117 patients. PLoS One 9(5):e96265. doi:10.​1371/​journal.​pone.​0096265 PubMed PubMedCentral CrossRef
  • 作者单位:Benjamin D. Elder (1)
    Sheng-Fu Lo (1)
    Thomas A. Kosztowski (1)
    C. Rory Goodwin (1)
    Ioan A Lina (1)
    John E. Locke (1)
    Timothy F. Witham (1)

    1. Department of Neurosurgery, The Johns Hopkins Hospital, 1800 Orleans Street, Baltimore, MD, USA, 21287
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Neurosurgery
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1437-2320
文摘
Expandable vertebral body replacement cages (VBRs) have been widely used for reconstruction of the thoracolumbar spine following corpectomy. However, their use in the cervical spine is less common, and currently, no expandable cages on the market are cleared or approved by the US Food and Drug Administration for use in the cervical spine. The objective of this study was to perform a systematic review on the use of expandable cages in the treatment of cervical spine pathology with a focus on fusion rates, deformity correction, complications, and indications. A comprehensive Medline search was performed, and 24 applicable articles were identified and included in this review. The advantages of expandable cages include greater ease of implantation with less risk of damage to the end plate, less intraoperative manipulation of the device, and potentially greater control over lordosis. They may be particularly advantageous in cases with poor bone quality, such as patients with osteoporosis or metastatic tumors that have been radiated. However, there is a potential risk of overdistraction, which is increased in the cervical spine, their minimum height limits their use in cases with collapsed vertebra, and the amount of hardware in the expansion mechanism may limit the surface area available for fusion. The use of expandable VBRs are a valuable tool in the armamentarium for reconstruction of the anterior column of the cervical spine with an acceptable safety profile. Although expandable cervical cages are clearly beneficial in certain clinical situations, widespread use following all corpectomies is not justified due to their significantly greater cost compared to structural bone grafts or non-expandable VBRs, which can be utilized to achieve similar clinical outcomes. Keywords Expandable cage Vertebral body replacement Supplemental fixation Cervical corpectomy Biomechanics

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700