Optimal surveillance coverage for teams of micro aerial vehicles in GPS-denied environments using onboard vision
详细信息    查看全文
  • 作者:Lefteris Doitsidis (12) ldoitsidis@chania.teicrete.gr
    Stephan Weiss (3) stephan.weiss@mavt.ethz.ch
    Alessandro Renzaglia (4) alessandro.renzaglia@inria.fr
    Markus W. Achtelik (3) markus.achtelik@mavt.ethz.ch
    Elias Kosmatopoulos (25) kosmatop@ee.duth.gr
    Roland Siegwart (3) rsiegwart@ethz.ch
    Davide Scaramuzza (6) davide.scaramuzza@ieee.org
  • 关键词:Mesh map &#8211 ; Mapping &#8211 ; Multi robot coverage &#8211 ; Autonomous micro aerial vehicles
  • 刊名:Autonomous Robots
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:33
  • 期:1-2
  • 页码:173-188
  • 全文大小:2.2 MB
  • 参考文献:1. Ascending Technologies GmbH, website, http://www.asctec.de.
    2. Bloesch, M., Weiss, S., Scaramuzza, D., & Siegwart, R. (2010). Vision based MAV navigation in unknown and unstructured environments. In IEEE international conference on robotics and automation (ICRA) (pp. 21–28).
    3. Breitenmoser, A., Metzger, J., Siegwart, R., & Rus, D. (2010). Distributed coverage control on surfaces in 3D space. In IEEE international conference on robotics and intelligent system (IROS), Taipei, Taiwan (pp. 5569–5576).
    4. Breitenmoser, A., Schwager, M., Metzger, J., Siegwart, R., & Rus, D. (2010). Voronoi coverage of non-convex environments with a group of networked robots. In Proceedings of the IEEE international conference on robotics and automation (ICRA), Anchorage, USA (pp. 4982–4989).
    5. Chen, H., & Xu, Z. (2006). 3D map building based on stereo vision. In Proceedings of the IEEE international conference on networking, sensing and control, ICNSC (pp. 969–973).
    6. Cort茅s, J., Mart铆nez, S., Karataş, T., & Bullo, F. (2004). Coverage control for mobile sensing networks. IEEE Transactions on Robotics and Automation, 20(2), 243–255.
    7. Ganguli, A., Cort茅s, J., & Bullo, F. (2005). Maximizing visibility in nonconvex polygons: nonsmooth analysis and gradient algorithm design. American Control Conference, 2, 792–797.
    8. Ganguli, A., Cort茅s, J., & Bullo, F. (2007). Visibility-based multi-agent deployment in orthogonal environments. In American control conference, New York, USA (pp. 3426–3431).
    9. Gurdan, D., Stumpf, J., Achtelik, M., Doth, K.-M., Hirzinger, G., & Rus, D. (2007). Energy-efficient autonomous four-rotor flying robot controlled at 1 kHz. In IEEE international conference on robotics and automation (ICRA) (pp. 361–366).
    10. Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). Mobile sensor network deployment using potential fields: a distributed, scalable solution to the area coverage problem. In Proceedings of the 6th international conference on distributed autonomous robotic system (DARS) (pp. 299–308).
    11. Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). An incremental deployment algorithm for mobile robot teams. In Proceedings of the IEEE international conference on robotics and intelligent system (IROS), Lausanne, Switzerland (pp. 2849–2854).
    12. In So, K., & Kanade, T. (1990). High resolution terrain map from multiple sensor data. In Intelligent robots and systems.
    13. Klein, G., & Murray, D. (2007). Parallel tracking and mapping for small AR workspaces. In International symposium on mixed and augmented reality (pp. 225–234).
    14. Kosmatopoulos, E. B. (2009). An adaptive optimization scheme with satisfactory transient performance. Automatica, 45(3), 716–723.
    15. Kosmatopoulos, E. B., & Kouvelas, A. (2009). Large-scale nonlinear control system fine-tuning through learning. IEEE Transactions on Neural Networks, 20(6), 1009–1023.
    16. Kosmatopoulos, E. B., Papageorgiou, M., Vakouli, A., & Kouvelas, A. (2007). Adaptive fine-tuning of nonlinear control systems with application to the urban traffic control strategy TUC. IEEE Transactions on Control Systems Technology, 15(6), 991–1002.
    17. Lacroix, S., Jung, I., & Mallet, A. (2001). Digital elevation map building from low altitude stereo imagery. In Proc. of the 9 th int. symposium on intelligent robotic systems.
    18. O’Rourke, J. (1987). Art gallery theorems and algorithms. New York: Oxford University Press.
    19. Pimenta, L., Kumar, V., Mesquita, R. C., & Pereira, G. (2008). Sensing and coverage for a network of heterogeneous robots. In 47th IEEE conference on decision and control, Cancun, Mexico (pp. 3947–3952).
    20. Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., & Ng, A. Y. (2009). ROS: an open-source robot operating system. In ICRA workshop on open source software.
    21. Renzaglia, A., Doitsidis, L., Martinelli, A., & Kosmatopoulos, E. B. (2010). Cognitive-based adaptive control for cooperative multi-robot coverage. In Proceedings of the IEEE international conference on robotics and intelligent system (IROS), Taipei, Taiwan (pp. 3314–3320).
    22. Renzaglia, A., Doitsidis, L., Martinelli, A., & Kosmatopoulos, E.B. (2011). Adaptive-based distributed cooperative multi-robot coverage. In Proceedings of the American control conference (ACC), San Francisco, CA, USA.
    23. Renzaglia, A., Doitsidis, L., Martinelli, A., & Kosmatopoulos, E. B. (2012, in press). Multi-robot 3d coverage of unknown areas. International Journal of Robotics Research. doi:10.1177/0278364912439332.
    24. Schwager, M., McLurkin, J., & Rus, D. (2006). Distributed coverage control with sensory feedback for networked robots. In Proceedings of robotics: science and systems, Philadelphia, USA.
    25. Schwager, M., Julian, B. J., & Rus, D. (2009). Optimal coverage for multiple hovering robots with downward facing camera. In Proceedings of the IEEE international conference on robotics and automation (ICRA), Kobe, Japan (pp. 3515–3522).
    26. Strasdat, H., Montiel, J. M. M., & Davison, A. J. (2011). Real-time monocular SLAM: why filter. In IEEE international conference on robotics and automation (ICRA) (pp. 2657–2664).
    27. Thrun, S., Burgard, W., & Fox, D. (2000). A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In Proc. of the IEEE international conference on robotics and automation (ICRA) (Vol. 1, pp. 321–328).
    28. Triebel, R., Pfaff, P., & Burgard, W. (2006). Multi-level surface maps for outdoor terrain mapping and loop closing. In 2006 IEEE/RSJ international conference on intelligent robots and systems (pp. 2276–2282).
    29. Urrutia, J. (2000). Art gallery and illumination problems. In Handbook of computational geometry (pp. 973–1027).
    30. Weiss, S., & Siegwart, R. (2011). Real-time metric state estimation for modular vision-inertial systems. In IEEE international conference on robotics and automation (ICRA) (pp. 4531–4537).
    31. Weiss, S., Achtelik, M., Kneip, L., Scaramuzza, D., & Siegwart, R. (2011). Intuitive 3D maps for MAV terrain exploration and obstacle avoidance. Journal of Intelligent & Robotic Systems, 61, 473–493.
    32. Weiss, S., Scaramuzza, D., & Siegwart, R. (2011). Monocular-SLAM-based navigation for autonomous micro helicopters in GPS-denied environments. Journal of Field Robotics, 28(6), 1–21.
  • 作者单位:1. Department of Electronics, Technological Educational Institute of Crete, Chania, 73133 Greece2. Informatics & Telematics Institute, (ITI-CERTH), 57001 Thessaloniki, Greece3. Autonomous Systems Lab, ETH Zurich, Zurich, Switzerland4. INRIA Rh么ne-Alpes, Grenoble, France5. Dept. of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, 67100 Greece6. AI Lab, University of Zurich, Zurich, Switzerland
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Automation and Robotics
    Electronic and Computer Engineering
    Computer Imaging, Vision, Pattern Recognition and Graphics
    Mechanical Engineering
    Simulation and Modeling
  • 出版者:Springer Netherlands
  • ISSN:1573-7527
文摘
This paper deals with the problem of deploying a team of flying robots to perform surveillance-coverage missions over a terrain of arbitrary morphology. In such missions, a key factor for the successful completion of the mission is the knowledge of the terrain’s morphology. The focus of this paper is on the implementation of a two-step procedure that allows us to optimally align a team of flying vehicles for the aforementioned task. Initially, a single robot constructs a map of the area using a novel monocular-vision-based approach. A state-of-the-art visual-SLAM algorithm tracks the pose of the camera while, simultaneously, autonomously, building an incremental map of the environment. The map generated is processed and serves as an input to an optimization procedure using the cognitive, adaptive methodology initially introduced in Renzaglia et al. (Proceedings of the IEEE international conference on robotics and intelligent system (IROS), Taipei, Taiwan, pp. 3314–3320, 2010). The output of this procedure is the optimal arrangement of the robots team, which maximizes the monitored area. The efficiency of our approach is demonstrated using real data collected from aerial robots in different outdoor areas.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700