Comparative mitochondrial genomics and phylogenetic relationships of the Crossoptilon species (Phasianidae, Galliformes)
详细信息    查看全文
  • 作者:Xuejuan Li (1)
    Yuan Huang (1)
    Fumin Lei (2)

    1. Co-Innovation Center for Qinba Regions鈥?Sustainable Development
    ; School of Life Sciences ; Shaanxi Normal University ; Xi鈥檃n ; 710062 ; China
    2. Key Laboratory of the Zoological Systematics and Evolution
    ; Institute of Zoology ; the Chinese Academy of Sciences ; Beijing ; 100101 ; China
  • 关键词:Mitochondrial genome ; Crossoptilon ; Phylogeny ; Divergence time ; Ka/Ks
  • 刊名:BMC Genomics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:1,023 KB
  • 参考文献:1. Lu X, Zheng GM, Gu BY. A preliminary investigation on taxonomy, distribution and evolutionary relationship of the eared pheasants, / Crossoptilon. Acta Zool Sin. 1998;44(2):131鈥?.
    2. Cheng TH. A complete checklist of species and subspecies of the Chinese birds. Beijing: Science Press; 1994. p. 31.
    3. Lu TC. The rare and endangered wild chicken in Chain. Fuzhou: Fujian Science and Technology Press; 1991.
    4. Cheng TH, Tan YK, Lu TC, Tang CG, Bao GJ, Li FL. Fauna of China. Aves, Vol. IV. Galliformes. Beijing: Science Press; 1978. p. 106鈥?.
    5. Johnsgard PA. The Pheasants of the World. New York: Oxford University Press; 1986.
    6. Shi XD, Zhang ZW, Liu LY. Karyo types and G-banding patterns of three eared-pheasant ( / Crossoptilon) species. Acta Zool Sin. 2001;47(3):280鈥?.
    7. Gan YL, Lu TC, Liu RS, He FQ, Lu CL, Gan YL, et al. Observation on scanning electron microscope of eggshell of / C. mantchuricumis, / C. crossoptilon and / C. auritum endemic pheasants in China. Acta Zool Sin. 1992;38(2):124鈥?.
    8. Zheng GM, Zhang W, Zhao XR. A comparative research on the hind limb muscles of eared pheasants, / Crossoptilon. In: Gao W, editor. The Study of Birds in China. Beijing: Science Press; 1991. p. 14鈥?.
    9. Lu TC, Liu RS, He FQ, Lu CL, Li GY. Ecology and systematic relationship of three species of the genus / Crossoptilon. Sichuan J Zool. 1989;8:21鈥?.
    10. Liu RS, Guo YJ, Li FL, Hou LH. Study on the relationship among three species of the genus / Crossoptilon by electraofocusing technique. Acta Zool Sin. 1985;31(2):206鈥?3.
    11. Ludlow F, Kinnear NB. The birds of south-eastern Tibet. Ibis. 1944;86:348鈥?9. CrossRef
    12. Tsam CDM, Rao G, Ji JG, Suo LCR, Wan QH, Fang SG. Taxonomic status of / Crossoptilon harmani and a phylogenetic study of the genus / crossoptilon. Acta Zool Sin. 2003;28(2):173鈥?.
    13. Rothschild L. On the avifauna of Yunnan, with critical notes. Novit Zool. 1926;33:189鈥?43.
    14. Delacour J. The Pheasant of the World. 2nd ed. London: World Pheasant Association and Spur Publications; 1977.
    15. Wu AP, Ding W, Zhang ZW, Zhan XJ. Phylogenetic relationship of the avian genus / Crossoptilon. Acta Zool Sin. 2005;51(5):898鈥?02.
    16. Yang C, Lei FM, Huang Y. Sequencing and Analysis of the Complete Mitochondrial Genome of / Pseudopodoces humilis (Aves, Paridae). Zool Res. 2010;31(4):333鈥?4.
    17. Sorenson MD. Avian mtDNA primers. 2003. Available from: http://people.bu.edu/msoren/primers.html.
    18. Staden R, Beal KF, Bonfield JK. The Staden package, 1998. Methods Mol Biol. 2000;132:115鈥?0.
    19. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955鈥?4. CrossRef
    20. Cannone JJ, Subramanian S, Schnare MN, Collett JR, D'Souza LM, Du Y, et al. The Comparative RNA Web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics. 2002;3(2):1鈥?1.
    21. Burk A, Douzery EJP, Springer MS. The secondary structure of mammalian mitochondrial 16S rRNA molecules: refinements based on a comparative phylogenetic approach. J Mamm Evol. 2002;9(3):225鈥?2. CrossRef
    22. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24(8):1596鈥?. CrossRef
    23. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;24:4876鈥?2. CrossRef
    24. Swofford DL. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sunderland, MA: Sinauer Associates; 2003.
    25. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinform. 2006;22:2688鈥?0. CrossRef
    26. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572鈥?. CrossRef
    27. Nylander JAA. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University;2004.
    28. Sorenson MD, Franzosa EA. TreeRot, version 3. Boston: Boston University, MA; 2007.
    29. Drummond AJ, Rambaut A. BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214. CrossRef
    30. Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29(8):1969鈥?3. CrossRef
    31. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4:e88. CrossRef
    32. Dyke GJ, Gulas BE, Crowe TM. Suprageneric relationships of galliform birds (Aves, Galliformes): a cladistic analysis of morphological characters. Zool J Linnean Soc. 2003;137:227鈥?4. CrossRef
    33. Crowe TM, Bowie RCK, Bloomer P, Mandiwana TG, Hedderson TAJ, Randi E, et al. Phylogenetics, biogeography and classification of, and character evolution in, gamebirds (Aves: Galliformes): effects of character exclusion, data partitioning and missing data. Cladistics. 2006;22:495鈥?32. CrossRef
    34. Tordoff HB, Macdonald JR. A new bird (family Cracidae) from the early Oligocene of South Dakota. Auk. 1957;74:174鈥?4. CrossRef
    35. Brodkorb P. Catalogue of fossil birds, part 2 (Anseriformes through Galliformes). Bull Florida State Mus Biol Sci. 1964;8:195鈥?35.
    36. Mourer-Chauvir茅 C. The Galliformes (Aves) of the Phosphorites du Quercy (France): systematics and biogeography. Natur Hist Mus Los Angeles County Sci Ser. 1992;36:67鈥?5.
    37. Zhang Z, Li J, Zhao XQ, Wang J, Wong GK, Yu J. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinforma. 2006;4:259鈥?3. CrossRef
    38. Nei M, Kumar S. Molecular Evolution and Phylogenetics. New York: Oxford University Press; 2000.
    39. Yang Z. Computational Molecular Evolution. New York: Oxford University Press; 2006. CrossRef
    40. Xu B, Yang Z. PAMLX: a graphical user interface for PAML. Mol Biol Evol. 2013;30:2723鈥?. CrossRef
    41. Bernsel A, Viklund H, Hennerdal A, Elofsson A. TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res. 2009;37(W):W465鈥?68. CrossRef
    42. Wolstenholme DR. Animal mitochondrial DNA: structure and evolution. Int Rev Cytol. 1992;141:173鈥?16. CrossRef
    43. Quinn TW. The genetic legacy of Mother Goose鈥損hylogeographic patterns of lesser snow goose Chen caerulescens caerulescens maternal lineages. Mol Ecol. 1992;1:105鈥?7. CrossRef
    44. Fumihito A, Miyake T, Sumi S-I, Takada M, Ohno S, Kondo N. One subspecies of the red junglefowl ( / Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds. Proc Natl Acad Sci U S A. 1994;91:12505鈥?. CrossRef
    45. Fumihito A, Miyake T, Takada M, Ohno S, Kondo N. The genetic link between the Chinese bamboo partridge ( / Bambusicola thoracica) and the chicken and junglefowls of the genus / Gallus. Proc Natl Acad Sci U S A. 1995;92:11053鈥?. CrossRef
    46. Ramirez V, Savoie P, Morais R. Molecular characterization and evolution of a duck mitochondrial genome. J Mol Evol. 1993;37:296鈥?10. CrossRef
    47. Douzery E, Randi E. The mitochondrial control region of Cervidae: evolutionary patterns and phylogenetic contents. Mol Biol Evol. 1997;14:1154鈥?6. CrossRef
    48. Dufresne C, Mignotte F, Gu茅ride M. The presence of tandem repeats and the initiation of replication in rabbit mitochondrial DNA. Eur J Biochem. 1996;235:593鈥?00. CrossRef
    49. Gemmell NJ, Western PS, Watson JM, Marshall-Graves JA. Evolution of the mammalian mitochondrial control region鈥攃omparisons of control region sequences between monotreme and therian mammals. Mol Biol Evol. 1996;13:798鈥?08. CrossRef
    50. Stewart DT, Baker AJ. Patterns of sequence variation in the mitochondrial D-loop region of shrews. Mol Biol Evol. 1994;11:9鈥?1.
    51. Fumagalli L, Taberlet P, Favre L, Hausser J. Origin and evolution of homologous repeated sequences in the mitochondrial DNA control region of shrews. Mol Biol Evol. 1996;13:31鈥?6. CrossRef
    52. Sbis脿 E, Tanzariello F, Reyes A, Pesole G, Saccone C. Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene. 1997;205:125鈥?0. CrossRef
    53. L鈥橝bb茅 DL, Duhaime JF, Lang BF, Morais R. The transcription of DNA in chicken mitochondria initiates from one major bidirectional promoter. J Biol Chem. 1991;266:10844鈥?0.
    54. Tang CZ. The analysis of system classification and geographical distribution of / Crossoptilon. Acta Zool Sin. 1998;23:86鈥?2.
    55. Wang N, Kimball RT, Braun EL, Liang B, Zhang ZW. Assessing phylogenetic relationships among Galliformes: a multigene phylogeny with expanded taxon sampling in Phasianidae. PLoS One. 2013;8(5):e64312. CrossRef
    56. Shen YY, Dai K, Cao X, Murphy RW, Shen XJ, Zhang YP. The Updated Phylogenies of the Phasianidae Based on Combined Data of Nuclear and Mitochondrial DNA. PLoS One. 2014;9(4):e95786. CrossRef
    57. Wetmore A. Fossil birds from Mongolia and China. Am Aus Novit. 1934;711:1鈥?6.
    58. Hou LH. Avian fossils of pleistocene from Zhoukoudian, China. Vertebrata Pal Asiatica. 1982;20:366鈥?.
    59. Yang YC, Li BY, Yin ZS, Zhang QS, Wang FB, Jing K, et al. Geomorphology of Xizang (Tibet). Beijing: Science Press; 1983. p. 1鈥?38.
    60. Li BY, Wang FB. Basic characteristics of landforms in the northwest Yunnan and southwest Sichuan area. In: Chinese Academy of Sciences, editor. The Comprehensive Scientific Expedition to the Qinghai-Xizang Plateau. Studies in Qinghai-Xizang (Tibet) Plateau Special Issue of Hengduan Mountains Scientific Expedition (II). Beijing: Beijing Science & Technology Press; 1986. p. 175鈥?3.
    61. Li JJ, Shi YF, Li BY. Uplift of the Qinghai鈥揦izang (Tibet) Plateau and Global Change. Lanzhou: Lanzhou University Press; 1995.
    62. Lei FM, Qu YH, Song G. Species diversification and phylogeographical patterns of birds in response to the uplift of the Qinghai-Tibet Plateau and Quaternary glaciations. Curr Zool. 2014;60(2):149鈥?1.
    63. Jiang LC, Wang GC, Peng R, Peng QK, Zou FD. Phylogenetic and molecular dating analysis of Taiwan Blue Pheasant ( / Lophura swinhoii). Gene. 2014;539(1):21鈥?. CrossRef
    64. Wang FL, Chen JM, Lai RX. Studies on the ancient and modern geographical distribution of Brown-eared Pheasants. J Shanxi Univ. 1985;3:86鈥?2.
    65. Zhang CA, Ding CQ. The distribution pattern of the Galliformes in China. Acta Zool Sin. 2008;33(2):317鈥?3.
    66. Wu MX, Wu JG, Kuang MS, Heng T. Relationship between Geographic Distribution of Endemic Birds and Climatic Factors in China. Res Env Sci. 2011;24(4):409鈥?0.
    67. Li JJ, Fang XM. Uplift of the Tibetan Plateau and environmental changes. Chinese Sci Bull. 1999;44:2117鈥?4. CrossRef
    68. Elson JL, Turnbull DM, Howell N. Comparative genomics and the evolution of human mitochondrial DNA: assessing the effects of selection. Am J Hum Genet. 2004;74:229鈥?8. CrossRef
    69. Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG, Hosseini S, et al. Natural selection shaped regional mtDNA variation in humans. Proc Natl Acad Sci U S A. 2003;100:171鈥?. CrossRef
    70. Coskun PE, Ruiz-Pesini E, Wallace DC. Control region mtDNA variants: longevity, climatic adaptation, and a forensic conundrum. Proc Natl Acad Sci U S A. 2003;100:2174鈥?. CrossRef
    71. Bhopal RS, Rafnsson SB. Could mitochondrial efficiency explain the susceptibility to adiposity, metabolic syndrome, diabetes and cardiovascular diseases in South Asian populations? Int J Epidemiol. 2009;38:1072鈥?1. CrossRef
    72. Gu ML, Wang YJ, Shi L, Zhang YB, Chu JY. Comparison on mitochondrial atp6, atp8 and cytb genes between Chinese Tibetans in three different zones: detecting the signature of natural selection on mitochondrial genome. Hereditas (Beijing). 2009;31:147鈥?2. CrossRef
    73. Zhang HX, Luo QB, Sun J, Liu F, Wu G, Yu J, et al. Mitochondrial genome sequences of / Artemia tibetiana and / A. urmiana: assessing molecular changes for high plateau adaptation. Sci China Life Sci. 2013;56:440鈥?2. CrossRef
    74. Shen YY, Shi P, Sun YB, Zhang YP. Relaxation of selective constraints on avian mitochondrial DNA following the degeneration of flight ability. Genome Res. 2009;19(10):1760鈥?. CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Phasianidae is a family of Galliformes containing 38 genera and approximately 138 species, which is grouped into two tribes based on their morphological features, the Pheasants and Partridges. Several studies have attempted to reconstruct the phylogenetic relationships of the Phasianidae, but many questions still remain unaddressed, such as the taxonomic status and phylogenetic relationships among Crossoptilon species. The mitochondrial genome (mitogenome) has been extensively used to infer avian genetic diversification with reasonable resolution. Here, we sequenced the entire mitogenomes of three Crossoptilon species (C. harmani, C. mantchuricum and C. crossoptilon) to investigate their evolutionary relationship among Crossoptilon species. Results The complete mitogenomes of C. harmani, C. mantchuricum and C. crossoptilon are 16682 bp, 16690 bp and 16680 bp in length, respectively, encoding a standard set of 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and a putative control region. C. auritum and C. mantchuricum are more closely related genetically, whereas C. harmani is more closely related to C. crossoptilon. Crossoptilon has a closer relationship with Lophura, and the following phylogenetic relationship was reconstructed: ((Crossoptilon + Lophura) + (Phasianus + Chrysolophus)). The divergence time between the clades C. harmani-C. crossoptilon and C. mantchuricum-C. auritum is consistent with the uplift of the Tibetan Plateau during the Tertiary Pliocene. The Ka/Ks analysis showed that atp8 gene in the Crossoptilon likely experienced a strong selective pressure in adaptation to the plateau environment. Conclusions C. auritum with C. mantchuricum and C. harmani with C. crossoptilon form two pairs of sister groups. The genetic distance between C. harmani and C. crossoptilon is far less than the interspecific distance and is close to the intraspecific distance of Crossoptilon, indicating that C. harmani is much more closely related to C. crossoptilon. Our mito-phylogenomic analysis supports the monophyly of Crossoptilon and its closer relationship with Lophura. The uplift of Tibetan Plateau is suggested to impact the divergence between C. harmani-C. crossoptilon clade and C. mantchuricum-C. auritum clade during the Tertiary Pliocene. Atp8 gene in the Crossoptilon species might have experienced a strong selective pressure for adaptation to the plateau environment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700