Molecular cloning and characterization of seven class III peroxidases induced by overexpression of the agrobacterial rolB gene in Rubia cordifolia transgenic callus cultures
详细信息    查看全文
  • 作者:G. N. Veremeichik (1)
    Y. N. Shkryl (1) yn80@mail.ru
    V. P. Bulgakov (12)
    T. V. Avramenko (12)
    Y. N. Zhuravlev (1)
  • 关键词:Peroxidase &#8211 ; Agrobacterium rhizogenes &#8211 ; Callus culture &#8211 ; RolB and rolC genes &#8211 ; Rubia cordifolia &#8211 ; Signal transduction
  • 刊名:Plant Cell Reports
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:31
  • 期:6
  • 页码:1009-1019
  • 全文大小:763.4 KB
  • 参考文献:1. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105
    2. Almagro L, G贸mez Ros LV, Belchi-Navarro S, Bru R, Ros Barcel贸 A, Pedren MA (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60:377–390
    3. Bakalovic N, Passardi F, Ioannidis V, Cosio C, Penel C, Falquet L, Dunand C (2006) PeroxiBase: a class III plant peroxidase database. Phytochemistry 67:534–539
    4. Bandyopadhyay U, Adak S, Banerjee RK (1999) Role of active site residues in peroxidase catalysis: studies on horseradish peroxidase. Proc Ind Natl Sci Acad B65:315–330
    5. Bhattacharyya DK, Bandyopadhyay U, Banerjee RK (1993) Chemical and kinetic evidence for an essential histidine residue in the electron transfer from aromatic donor to horseradish peroxidase compound I. J Biol Chem 268:22292–22298
    6. Bonfill M, Cusid贸 RM, Palaz贸n J, Canut E, Pi帽ol MT, Morales C (2003) Relationship between peroxidase activity and organogenesis in Panax ginseng calluses. Plant Cell Tiss Org 73:37–41
    7. Bonhomme V, Laurain-Mattar D, Lacoux J, Fliniaux MA, Jacquin-Dubreuil A (2000) Tropane alkaloid production by hairy roots of Atropa belladonna obtained after transformation with Agrobacterium rhizogenes 15834 and Agrobacterium tumefaciens containing rol A, B, C genes only. J Biotechnol 81:151–158
    8. Bulgakov VP, Khodakovskaya MV, Labetskaya NV, Tchernoded GK, Zhuravlev YN (1998) The impact of plant rolC oncogene on ginsenoside production by ginseng hairy root cultures. Phytochemistry 49:1929–1934
    9. Bulgakov VP, Tchernoded GK, Mischenko NP, Khodakovskaya MV, Glazunov VP, Radchenko SV, Zvereva EV, Fedoreyev SA, Zhuravlev YN (2002) Effect of salicylic acid, methyl jasmonate, ethephon and cantharidin on anthraquinone production by Rubia cordifolia callus cultures transformed with the rolB and rolC genes. J Biotechnol 97:213–221
    10. Bulgakov VP, Tchernoded GK, Mischenko NP, Shkryl YN, Glazunov VP, Fedoreyev SA, Zhuravlev YN (2003) Effects of Ca2+ channel blockers and protein kinase/phosphatase inhibitors on growth and anthraquinone production in Rubia cordifolia callus cultures transformed by the rolB and rolC genes. Planta 217:349–355
    11. Bulgakov VP, Tchernoded GK, Mischenko NP, Shkryl YN, Fedoreyev SA, Zhuravlev YN (2004) The rolB and rolC genes activate synthesis of anthraquinones in Rubia cordifolia cells by mechanism independent of octadecanoid signaling pathway. Plant Sci 166:1069–1075
    12. Bulgakov VP, Aminin DL, Shkryl YN, Gorpenchenko TY, Veremeichik GN, Dmitrenok PS, Zhuravlev YN (2008) Suppression of reactive oxygen species and enhanced stress tolerance in Rubia cordifolia cells expressing the rolC oncogene. Mol Plant Microbe Interact 21:1561–1570
    13. Bulgakov VP, Shkryl YN, Veremeichik GN (2010) Engineering high yields of secondary metabolites in Rubia cell cultures through transformation with rol genes. Methods Mol Biol 643:229–242
    14. Bulgakov VP, Gorpenchenko TY, Shkryl YN, Veremeichik GN, Mischenko NP, Avramenko TV, Fedoreyev SA, Zhuravlev YN (2011) CDPK-driven changes in the intracellular ROS level and plant secondary metabolism. Bioeng Bugs 2:327–330
    15. Bulgakov VP, Gorpenchenko TY, Veremeichik GN, Shkryl YN, Tchernoded GK, Aminin DL, Zhuravlev YN (submitted) The rolB gene suppresses reactive oxygen species in transformed plant cells through the sustained activation of antioxidant defense. Plant Physiol
    16. Capone I, Span貌 L, Cardarelli M, Bellincampi D, Petit A, Costantino P (1989) Induction and growth properties of carrot roots with different complements of Agrobacterium rhizogenes T-DNA. Plant Mol Biol 13:43–52
    17. Carter C, Pan S, Zouhar J, Avila E, Girke T, Raikhel N (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16:3285–3303
    18. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552
    19. Costa MMR, Hilliou F, Duarte P, Pereira LG, Almeida I, Leech M, Memelink J, Ros Barcel贸 A, Sottomayor M (2008) Molecular cloning and characterization of a vacuolar class III peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus. Plant Physiol 146:403–417
    20. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797
    21. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971
    22. Felsenstein J (1989) PHYLIP––Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166
    23. Ferrer MA, Calder贸n AA, Mu帽oz R, Ros Barcel贸 A (1990) 4-Methoxy-α-naphtol as a specific substrate for kinetic, zymographic and cytochemical studies on plant peroxidase activities. Phytochem Anal 1:63–69
    24. Gajhede M, Schuller DJ, Henriksen A, Smith AT, Poulos TL (1997) Crystal structure of horseradish peroxidase C at 2.15 脜 resolution. Nat Struct Biol 4:1032–1038
    25. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704
    26. Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462–468
    27. Kochba J, Lavee S, Spiegel-Roy P (1977) Differences in peroxidase activity and isoenzymes in embryogenic and non-embryogenic “Shamouti” orange ovular callus lines. Plant Cell Physiol 18:463–467
    28. Liu G, Sheng X, Greenshields DL, Ogieglo A, Kaminskyj S, Selvaraj G, Wei Y (2005) Profiling of wheat class III peroxidase genes derived from powdery mildew-attacked epidermis reveals distinct sequence-associated expression patterns. Mol Plant Microbe Interact 18:730–741
    29. Majumdar S, Garai S, Jha S (2011) Genetic transformation of Bacopa monnieri by wild type strains of Agrobacterium rhizogenes stimulates production of bacopa saponins in transformed calli and plants. Plant Cell Rep 30:941–954
    30. Matz M, Shagin D, Bogdanova O, Lukyanov S, Diatchenko L, Chenchik A (1999) Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic Acids Res 2:1558–1560
    31. Maurel S, Barbier-Bryqoo H, Spena A, Tempe G, Guern G (1991) Single rol genes from the Agrobacterium rhizogenes T(L)-DNA alter some of the cellular responses to auxin in Nicotiana tobacum. Plant Physiol 97:212–216
    32. Mishchenko NP, Fedoreev SA, Bryukhanov VM, Zverev YF, Lampatov VV, Azarova OV, Shkryl YN, Chernoded GK (2007) Chemical composition and pharmacological activity of anthraquinones from Rubia cordifolia cell cultures. Pharm Chem J 41:605–609
    33. Moreno OA, Vazquez-Duhalt R, Ochoa JL (1989) Peroxidase activity in calluses and cell suspension cultures of radish Raphanus sativus var. Cherry Bell. Plant Cell Tiss Org 18:321–327
    34. Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–36
    35. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    36. Palaz贸n J, Cusido RM, Gonzalo J, Bonfill M, Morales C, Pinol MT (1998) Relation between the amount of rolC gene product and indole alkaloid accumulation in Catharanthus roseus transformed root cultures. J Plant Physiol 153:712–718
    37. Park SY, Ryu SH, Kwon SY, Lee HS, Kim JG, Kwak SS (2003) Differential expression of six novel peroxidase cDNAs from cell cultures of sweetpotato in response to stress. Mol Gen Genomics 269:542–552
    38. Passardi F, Longet D, Penel C, Dunand C (2004) The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry 65:1879–1893
    39. Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265
    40. Sasaki K, Iwai T, Hiraga S, Kuroda K, Seo S, Mitsuhara I, Miyasaka A, Iwano M, Ito H, Matsui H, Ohashi Y (2004) Ten rice peroxidases redundantly respond to multiple stresses including infection with rice blast fungus. Plant Cell Physiol 45:1442–1452
    41. Schm眉lling T, Schell JS, Spena A (1988) Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7:2621–2629
    42. Shkryl YN, Veremeichik GN, Bulgakov VP, Tchernoded GK, Mischenko NP, Fedoreyev SA, Zhuravlev YN (2008) Individual and combined effects of the rolA, B, and C genes on anthraquinone production in Rubia cordifolia transformed calli. Biotechnol Bioeng 100:118–125
    43. Shkryl YN, Veremeichik GN, Bulgakov VP, Gorpenchenko TY, Aminin DL, Zhuravlev YN (2010) Decreased ROS level and activation of antioxidant gene expression in Agrobacterium rhizogenes pRiA4-transformed calli of Rubia cordifolia. Planta 232:1023–1032
    44. Shkryl YN, Veremeichik GN, Bulgakov VP, Zhuravlev YN (2011) Induction of anthraquinone biosynthesis in Rubia cordifolia cells by heterologous expression of a calcium-dependent protein kinase gene. Biotechnol Bioeng 108:1734–1738
    45. Singh R, Geetanjali, Chauhan SMS (2004) 9, 10-Anthraquinones and other biologically active compounds from the genus Rubia. Chem Biodivers 1:1241–1264
    46. Slightom J, Durand-Tardif M, Joanin L, Tepfer D (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. J Biol Chem 261:108–121
    47. Spena A, Schm眉lling T, Koncz C, Schell JS (1987) Independent and synergistic activity of rolA, B and C loci in stimulating abnormal growth in plants. EMBO J 6:3891–3899
    48. Tanaka M, Nagano S, Ishimori K, Morishima I (1997) Hydrogen bond network in the distal site of peroxidases: spectroscopic properties of Asn70 –> Asp horseradish peroxidase mutant. Biochemistry 36:9791–9798
    49. van Altvorst AC, Bino RJ, van Dijk AJ, Lamers AMJ, Lindhout WH, van der Mark F, Dons JJM (1992) Effects of the introduction of Agrobacterium rhizogenes rol genes on tomato plant and flower development. Plant Sci 83:77–85
    50. Welinder KG (1985) Plant peroxidases. Their primary, secondary and tertiary structures, and relation to cytochrome c peroxidase. Eur J Biochem 151:497–504
    51. Welinder KG, Justesen AF, Kjaersg氓rd IV, Jensen RB, Rasmussen SK, Jespersen HM, Duroux L (2002) Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana. Eur J Biochem 269:6063–6081
    52. Xu JF, Sun Y, Su ZG (1998) Enhanced peroxidase production by suspension culture of carrot compact callus aggregates. J Biotechnol 65:203–208
  • 作者单位:1. Institute of Biology and Soil Science of the Far East Branch of Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022 Russia2. Far Eastern Federal University, 8 Sukhanova St., Vladivostok, 690950 Russia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Plant Sciences
    Biotechnology
    Plant Biochemistry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-203X
文摘
Here, seven new class III peroxidase genes of Rubia cordifolia L., RcPrx01–RcPrx07, were isolated and characterized. Expression of the Prx genes was studied in R. cordifolia aerial organs as well as in cells transformed with the rolB and rolC genes of Agrobacterium rhizogenes and cells transformed with the wild-type A. rhizogenes A4 strain. In rolC- and rolB-transformed cells, the rol genes were expressed under the control of the 35S promoter, whereas in A. rhizogenes A4-transformed cells the rol genes were expressed under the control of their native promoters. All studied peroxidase genes were greatly upregulated in rolB-overexpressing cells. In contrast, overexpression of the rolC gene and expression of the rol genes under the control of their native promoters had little effect on the abundance of peroxidase transcripts. In accordance with this observation, peroxidase activity was substantially increased in rolB cells and was slightly affected in other transformed cells. Our results indicate that rolB strictly affects the regulation of a set of seven R. cordifolia class III peroxidases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700