Bandgap nanoengineering of graphene tunnel diodes and tunnel transistors to control the negative differential resistance
详细信息    查看全文
  • 作者:Viet Hung Nguyen (1) (2) (3)
    Jér?me Saint-Martin (1)
    Damien Querlioz (1)
    Fulvio Mazzamuto (1)
    Arnaud Bournel (1)
    Yann-Michel Niquet (3)
    Philippe Dollfus (1)
  • 关键词:Graphene device ; Dirac fermions ; Green’s function ; Quantum transport ; Negative differential resistance ; Tunnel diode ; Tunnel transistor
  • 刊名:Journal of Computational Electronics
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:12
  • 期:2
  • 页码:85-93
  • 全文大小:804KB
  • 参考文献:1. Mizuta, H., Tanoue, T.: The Physics and Application of Resonant Tunnelling Diodes. Cambridge University Press, Cambridge (1995) CrossRef
    2. Katsnelson, M.I., Novoselov, K.S., Geim, A.K.: Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620-25 (2006) CrossRef
    3. Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5, 487-96 (2010) CrossRef
    4. Cresti, A., Grosso, G., Parravicini, G.P.: Valley-valve effect and even-odd chain parity in p-n graphene junctions. Phys. Rev. B 77, 233402 (2008) CrossRef
    5. Wang, Z.F., Li, Q., Shi, Q.W., Wang, X., Yang, J., Hou, J.G., Chen,?J.: Chiral selective tunneling induced negative differential resistance in zigzag graphene nanoribbon: a theoretical study. Appl. Phys. Lett. 92, 133114 (2008) CrossRef
    6. Nam Do, V., Dollfus, P.: Negative differential resistance in zigzag-edge graphene nanoribbon junctions. J. Appl. Phys. 107, 063705 (2010) CrossRef
    7. Cheraghchi, H., Esmailzade, H.: A gate-induced switch in zigzag graphene nanoribbons and charging effects. Nanotechnology 21, 205306 (2010) CrossRef
    8. Habib, K.M.M., Zahid, F., Lake, R.K.: Negative differential resistance in bilayer graphene nanoribbons. Appl. Phys. Lett. 98, 192112 (2011) CrossRef
    9. Ren, H., Li, Q.-X., Luo, Y., Yang, J.: Graphene nanoribbon as a negative differential resistance device. Appl. Phys. Lett. 94, 173110 (2009) CrossRef
    10. Teong, H., Lam, K.-T., Khalid, S.B., Liang, G.: Shape effects in graphene nanoribbon resonant tunneling diodes: a computational study. J. Appl. Phys. 105, 084317 (2009) CrossRef
    11. Hung Nguyen, V., Bournel, A., Dollfus, P.: Resonant tunneling structures based on epitaxial graphene on SiC. Semicond. Sci. Technol. 26, 125012 (2011) CrossRef
    12. González, J.W., Pacheco, M., Rosales, L., Orellana, P.A.: Transport properties of graphene quantum dots. Phys. Rev. B 83, 155450 (2011) CrossRef
    13. Mazzamuto, F., Hung Nguyen, V., Apertet, Y., Ca?r, C., Chassat,?C., Saint-Martin, J., Dollfus, P.: Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons. Phys. Rev. B 83, 235426 (2011) CrossRef
    14. Rodríguez-Vargas, I., Madrigal-Melchor, J., Oubram, O.: Resonant tunneling through double barrier graphene systems: a comparative study of Klein and non-Klein tunneling structures. J.?Appl. Phys. 112, 073711 (2012) CrossRef
    15. Hung Nguyen, V., Mazzamuto, F., Bournel, A., Dollfus, P.: Resonant tunneling diode based on graphene/h-BN heterostructure. J.?Phys. D, Appl. Phys. 45, 325104 (2012) CrossRef
    16. Ferreira, G.J., Leuenberger, M.N., Loss, D., Egues, J.C.: Low-bias negative differential resistance in graphene nanoribbon superlattices. Phys. Rev. B 84, 125453 (2011) CrossRef
    17. Nam Do, V., Hung Nguyen, V., Dollfus, P., Bournel, A.: Electronic transport and spin-polarized effects of relativistic-like particles in graphene structures. J. Appl. Phys. 104, 063708 (2008) CrossRef
    18. Wu, Y., Farmer, D.B., Zhu, W., Han, S.J., Dimitrakopoulos, C.D., Bol, A.A., Avouris, P., Lin, Y.-M.: Three-terminal graphene negative differential resistance devices. ACS Nano 6, 2610-616 (2012) CrossRef
    19. Wu, Y., Perebeinos, V., Lin, Y.-M., Low, T., Xia, F., Avouris, P.: Quantum behavior of graphene transistors near the scaling limit. Nano Lett. 12, 1417-423 (2012) CrossRef
    20. Majumdar, K., Kallatt, S., Bhat, N.: High field carrier transport in graphene: insights from fast current transient. Appl. Phys. Lett. 101, 123505 (2012) CrossRef
    21. Alarcón, A., Hung Nguyen, V., Berrada, S., Saint-Martin, J., Bournel, A., Dollfus, P.: Negative differential conductance and chiral effects in graphene field-effect transistors. In: Proc. IWCE 2012 (2012). doi:10.1109/IWCE.2012.6242820
    22. Hung Nguyen, V., Bournel, A., Dollfus, P.: Large peak-to-valley ratio of negative differential conductance in graphene p-n junctions. J. Appl. Phys. 109, 093706 (2011) CrossRef
    23. Fiori, G.: Negative differential resistance in mono and bilayer graphene p-n junctions. IEEE Electron Device Lett. 32, 1334-336 (2011) CrossRef
    24. Hung Nguyen, V., Mazzamuto, F., Saint-Martin, J., Bournel, A., Dollfus, P.: Giant effect of negative differential conductance in graphene nanoribbon p-n heterojunctions. Appl. Phys. Lett. 99, 042105 (2011) CrossRef
    25. Hung Nguyen, V., Mazzamuto, F., Saint-Martin, J., Bournel,?A., Dollfus, P.: Graphene nanomesh-based devices exhibiting a strong negative differential conductance effect. Nanotechnology 23, 065201 (2012) CrossRef
    26. Hung Nguyen, V., Niquet, Y.-M., Dollfus, P.: Gate-controllable negative differential conductance in graphene tunneling transistors. Semicond. Sci. Technol. 27, 105018 (2012) CrossRef
    27. Giovannetti, G., Khomyakov, P.A., Brocks, G., Kelly, P.J., van?den Brink, J.: Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys. Rev.?B 76, 073103 (2007) CrossRef
    28. Kharche, N., Nayak, S.K.: Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate. Nano Lett. 11, 5274-278 (2011) CrossRef
    29. Xu, Y., Guo, Z., Chen, H., Yuan, Y., Lou, J., Lin, X., Gao, H., Chen, H., Yu, B.: In-plane and tunneling pressure sensors based on graphene/hexagonal boron nitride heterostructures. Appl. Phys. Lett. 99, 133109 (2011) CrossRef
    30. Fan, Y., Zhao, M., Wang, Z., Zhang, X., Zhang, H.: Tunable electronic structures of graphene/boron nitride heterobilayers. Appl. Phys. Lett. 98, 083103 (2011) CrossRef
    31. Zomer, P.J., Dash, S.P., Tombros, N., van Wees, B.J.: A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett. 99, 232104 (2011) CrossRef
    32. Bai, J., Zhong, X., Jiang, S., Huang, Y., Duan, X.: Graphene nanomesh. Nat. Nanotechnol. 5, 190-94 (2010) CrossRef
    33. Oswald, W., Wu, Z.: Energy gaps in graphene nanomeshes. Phys. Rev. B 85, 115431 (2012) CrossRef
    34. Hung Nguyen, V., Chung Nguyen, M., Viet Nguyen, H., Dollfus,?P.: Disorder effects on energy bandgap and electronic transport in graphene-nanomesh-based structures. J. Appl. Phys. 113, 013702 (2012) CrossRef
    35. Yang, H.-X., Chshiev, M., Boukhvalov, D.W., Waintal, X., Roche,?S.: Inducing and optimizing magnetism in graphene nanomeshes. Phys. Rev. B 84, 214404 (2011) CrossRef
    36. Hung Nguyen, V., Nam Do, V., Bournel, A., Lien Nguyen,?V., Dollfus, P.: Controllable spin-dependent transport in armchair graphene nanoribbon structures. J. Appl. Phys. 106, 053710 (2009) CrossRef
    37. Reich, S., Maultzsch, J., Thomsen, C.: Tight-binding description of graphene. Phys. Rev. B 66, 035412 (2002) CrossRef
    38. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109-62 (2009) CrossRef
    39. Son, Y.-W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006) CrossRef
    40. Fiori, G., Iannaccone, G.: On the possibility of tunable-gap bilayer graphene FET. IEEE Electron Device Lett. 30, 261-64 (2009) CrossRef
    41. Guo, J., Datta, S., Lundstrom, M., Anantram, M.P.: Towards multi-scale modeling of carbon nanotube transistors. Int. J. Multiscale Comput. Eng. 2, 257-60 (2004) CrossRef
    42. Lopez Sancho, M.P., Lopez Sancho, J.M., Rubio, J.: Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F, Met. Phys. 14, 1205-215 (1984) CrossRef
    43. Anantram, M.P., Lundstrom, M.S., Nikonov, D.E.: Modeling of nanoscale devices. Proc. IEEE 96, 1511-550 (2008) CrossRef
    44. Ren, Z.: Nanoscale MOSFETs: physics, simulation, and design. Ph.D. Dissertation, Purdue University, West Lafayette, USA (2001)
    45. Huard, B., Sulpizio, J.A., Stander, N., Todd, K., Yang, B., Goldhaber-Gordon, D.: Transport measurements across a tunable potential barrier in graphene. Phys. Rev. Lett. 98, 236803 (2007) CrossRef
    46. Brenner, K., Murali, R.: Single step, complementary doping of graphene. Appl. Phys. Lett. 96, 063104 (2010) CrossRef
    47. Liu, G., Wu, Y., Lin, Y.-M., Farmer, D.B., Ott, J.A., Bruley, J., Grill, A., Avouris, P., Pfeiffer, D., Balandin, A.A., Dimitrakopoulos, C.: Epitaxial graphene nanoribbon array fabrication using BCP-assisted nanolithography. ACS Nano 6, 6786-792 (2012) CrossRef
    48. Liang, X., Jung, Y.-S., Wu, S., Ismach, A., Olynick, D.L., Cabrini,?S., Bokor, J.: Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Lett. 10, 2454-460 (2010) CrossRef
    49. Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095-110 (2010) CrossRef
    50. Leburton, J.-P., Kolodzey, J., Briggs, S.: Bipolar tunneling field-effect transistor: a three terminal negative differential resistance device for high-speed applications. Appl. Phys. Lett. 52, 1608-610 (1988) CrossRef
    51. Omura, Y.: Negative conductance properties in extremely thin silicon-on-insulator (SOI) insulated-gate pn-junction devices (SOI surface tunnel transistors). Jpn. J. Appl. Phys. 35, L1401–L1403 (1996) CrossRef
    52. Koga, J., Toriumi, A.: Three-terminal silicon surface junction tunneling device for room temperature operation. IEEE Electron Device Lett. 20, 529-31 (1999) CrossRef
  • 作者单位:Viet Hung Nguyen (1) (2) (3)
    Jér?me Saint-Martin (1)
    Damien Querlioz (1)
    Fulvio Mazzamuto (1)
    Arnaud Bournel (1)
    Yann-Michel Niquet (3)
    Philippe Dollfus (1)

    1. Institute of Fundamental Electronics (IEF), CNRS, UMR 8622, Univ. Paris-Sud, Orsay, France
    2. Center for Computational Physics, Institute of Physics, Vietnam Academy of Science and Technology, Hanoi, Vietnam
    3. L_Sim, SP2M, UMR-E CEA/UJF-Grenoble 1, INAC, Grenoble, France
  • ISSN:1572-8137
文摘
By means of numerical simulation based on the Green’s function formalism on a tight binding Hamiltonian, we investigate different possibilities of achieving a strong effect of negative differential resistance in graphene tunnel diodes, the operation of which is controlled by the interband tunneling between both sides of the PN junction. We emphasize on different approaches of bandgap nanoengineering, in the form of nanoribbons (GNRs) or nanomeshes (GNMs), which can improve the device behaviour. In particular, by inserting a small or even zero bandgap section in the transition region separating the doped sides of the junction, the peak current and the peak-to-valley ratio (PVR) are shown to be strongly enhanced and weakly sensitive to the length fluctuations of the transition region, which is an important point regarding applications. The study is extended to the tunneling FET which offers the additional possibility of modulating the interband tunneling and the PVR. The overall work suggests the high potential of GNM lattices for designing high performance devices for either analog or digital applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700