Reformulation versus cutting-planes for robust optimization
详细信息    查看全文
  • 作者:Dimitris Bertsimas ; Iain Dunning ; Miles Lubin
  • 关键词:Robust optimization ; Computational benchmarking
  • 刊名:Computational Management Science
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:13
  • 期:2
  • 页码:195-217
  • 全文大小:599 KB
  • 参考文献:Ben-Tal A, El Ghaoui, L, Nemirovski A (2009) Robust optimization. Princeton University Press, Princeton
    Ben-Tal A, Nemirovski A (1999) Robust solutions of uncertain linear programs. Oper Res Lett 25(1):1–13CrossRef
    Ben-Tal A, Nemirovski A (2000) Robust solutions of linear programming problems contaminated with uncertain data. Math Program 88:411–424CrossRef
    Bertsimas D, Brown DB, Caramanis C (2011) Theory and applications of robust optimization. SIAM Rev 53(3):464–501CrossRef
    Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52(1):35–53CrossRef
    Bixby R, Ceria S, McZeal C, Savelsberg M (1998) An updated mixed integer programming library: MIPLIB 3.0. Optima 58:12–15
    Briant O, Lemarchal C, Meurdesoif P, Michel S, Perrot N, Vanderbeck F (2008) Comparison of bundle and classical column generation. Math Program 113(2):299–344CrossRef
    Carvajal R, Ahmed S, Nemhauser G, Furman K, Goel V, Shao Y (2014) Using diversification, communication and parallelism to solve mixed-integer linear programs. Oper Res Lett 42(2):186–189CrossRef
    Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles. Math Program 91:201–213CrossRef
    Efron B, Tibshirani RJ (1994) An introduction to the bootstrap, vol. 57. CRC Press, USA
    Fischetti M, Monaci M (2012) Cutting plane versus compact formulations for uncertain (integer) linear programs. Math Program Comput 4:239–273CrossRef
    Fleming PJ, Wallace JJ (1986) How not to lie with statistics: the correct way to summarize benchmark results. Commun ACM 29(3):218–221CrossRef
    Gay DM (1985) Electronic mail distribution of linear programming test problems. Math Program Soc COAL Newsl 13:10–12
    Goh J, Sim M (2011) Robust optimization made easy with rome. Oper Res 59(4):973–985CrossRef
    Gurobi Optimization Inc. (2014) Gurobi optimizer reference manual. http://​www.​gurobi.​com . Accessed 1 June 2014
    Koch T, Achterberg T, Andersen E, Bastert O, Berthold T, Bixby RE, Danna E, Gamrath G, Gleixner AM, Heinz S, Lodi A, Mittelmann H, Ralphs T, Salvagnin D, Steffy DE, Wolter K (2011) MIPLIB 2010. Math Program Comput 3(2):103–163CrossRef
    Koch T, Ralphs T, Shinano Y (2012) Could we use a million cores to solve an integer program? Math Methods Oper Res 76(1):67–93CrossRef
    Mittelmann H (2015) Benchmark of parallel LP solvers. http://​plato.​asu.​edu/​ftp/​lpcom.​html . Accessed 1 Mar 2015
    Mutapcic A, Boyd S (2009) Cutting-set methods for robust convex optimization with pessimizing oracles. Optim Methods Softw 24(3):381–406CrossRef
    Zverovich V, Fbin C, Ellison E, Mitra G (2012) A computational study of a solver system for processing two-stage stochastic LPs with enhanced benders decomposition. Math Program Comput 4(3):211–238CrossRef
  • 作者单位:Dimitris Bertsimas (1)
    Iain Dunning (1)
    Miles Lubin (1)

    1. Operations Research Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
  • 刊物主题:Operations Research/Decision Theory; Optimization;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1619-6988
文摘
Robust optimization (RO) is a tractable method to address uncertainty in optimization problems where uncertain parameters are modeled as belonging to uncertainty sets that are commonly polyhedral or ellipsoidal. The two most frequently described methods in the literature for solving RO problems are reformulation to a deterministic optimization problem or an iterative cutting-plane method. There has been limited comparison of the two methods in the literature, and there is no guidance for when one method should be selected over the other. In this paper we perform a comprehensive computational study on a variety of problem instances for both robust linear optimization (RLO) and robust mixed-integer optimization (RMIO) problems using both methods and both polyhedral and ellipsoidal uncertainty sets. We consider multiple variants of the methods and characterize the various implementation decisions that must be made. We measure performance with multiple metrics and use statistical techniques to quantify certainty in the results. We find for polyhedral uncertainty sets that neither method dominates the other, in contrast to previous results in the literature. For ellipsoidal uncertainty sets we find that the reformulation is better for RLO problems, but there is no dominant method for RMIO problems. Given that there is no clearly dominant method, we describe a hybrid method that solves, in parallel, an instance with both the reformulation method and the cutting-plane method. We find that this hybrid approach can reduce runtimes to 50–75 % of the runtime for any one method and suggest ways that this result can be achieved and further improved on.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700