Optimal Deterministic Algorithms for 2-d and 3-d Shallow Cuttings
详细信息    查看全文
文摘
We present optimal deterministic algorithms for constructing shallow cuttings in an arrangement of lines in two dimensions or planes in three dimensions. Our results improve the deterministic polynomial-time algorithm of Matoušek (Comput Geom 2(3):169–186, 1992) and the optimal but randomized algorithm of Ramos (Proceedings of the Fifteenth Annual Symposium on Computational Geometry, SoCG’99, 1999). This leads to efficient derandomization of previous algorithms for numerous well-studied problems in computational geometry, including halfspace range reporting in 2-d and 3-d, k nearest neighbors search in 2-d, \(({\le }k)\)-levels in 3-d, order-k Voronoi diagrams in 2-d, linear programming with k violations in 2-d, dynamic convex hulls in 3-d, dynamic nearest neighbor search in 2-d, convex layers (onion peeling) in 3-d, \(\varepsilon \)-nets for halfspace ranges in 3-d, and more. As a side product we also describe an optimal deterministic algorithm for constructing standard (non-shallow) cuttings in two dimensions, which is arguably simpler than the known optimal algorithms by Matoušek (Discrete Comput Geom 6(1):385–406, 1991) and Chazelle (Discrete Comput Geom 9(1):145–158, 1993).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700