Interaction specific binding hotspots in Endonuclease colicin-immunity protein complex from MD simulations
详细信息    查看全文
  • 作者:XueXia Yao (14877) (24877)
    ChangGe Ji (34877)
    DaiQian Xie (14877)
    John Z. H. Zhang (34877) (44877)
  • 关键词:protein ; protein interaction ; binding hotspot ; mutation ; Endonuclease Colicin ; immunity protein ; MD simulation
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:56
  • 期:8
  • 页码:1143-1151
  • 全文大小:845KB
  • 参考文献:1. Keskin O, Gursoy A, Ma B, Nussinov R. Principles of protein-protein interactions: What are the preferred ways for proteins to interact? / Chem Rev, 2008, 108: 1225鈥?244 CrossRef
    2. Jones S, Thornton JM. Principles of protein-protein interactions. / Proc Natl Acad Sci USA, 1996, 93: 13鈥?0 CrossRef
    3. Pawson T, Nash P. Protein-protein interactions define specificity in signal transduction. / Genes Dev, 2000, 14: 1027鈥?047
    4. Schreiber G, Haran G, Zhou HX. Fundamental aspects of protein-protein association kinetics. / Chem Rev, 2009, 109: 839鈥?60 CrossRef
    5. Lo Conte L, Chothia C, Janin J. The atomic structure of protein-protein recognition sites. / J Mol Biol, 1999, 285: 2177鈥?198 CrossRef
    6. Northrup SH, Erickson HP. Kinetics of protein-protein association explained by Brownian dynamics computer simulation. / Proc Natl Acad Sci USA, 1992, 89: 3338鈥?342 CrossRef
    7. Pazos F, Helmer-Citterich M, Ausiello G, Valencia A. Correlated mutations contain information about protein-protein interaction. / J Mol Biol, 1997, 271: 511鈥?23 CrossRef
    8. Kuhlmann UC, Pommer AJ, Moore GR, James R, Kleanthous C. Specificity in protein-protein interactions: the structural basis for dual recognition in endonuclease colicin-immunity protein complexes. / J Mol Biol, 2000, 301: 1163鈥?178 CrossRef
    9. Kleanthous C, Kuhlmann UC, Pommer AJ, Ferguson N, Radford SE, Moore GR, James R, Hemmings AM. Structural and mechanistic basis of immunity toward endonuclease colicins. / Nat Struct Biol, 1999, 6: 243鈥?52 CrossRef
    10. Wallis R, Leung KY, Osborne MJ, James R, Moore GR, Kleanthous C. Specificity in protein-protein recognition: Conserved Im9 residues are the major determinants of stability in the colicin E9 DNase-Im9 complex. / Biochemistry, 1998, 37: 476鈥?85 CrossRef
    11. Keeble AH, Joachimiak LA, Mate MJ, Meenan N, Kirkpatrick N, Baker D, Kleanthous C. Experimental and computational analyses of the energetic basis for dual recognition of immunity proteins by colicin endonucleases. / J Mol Biol, 2008, 379: 745鈥?59 CrossRef
    12. Wong SE, Baron R, McCammon JA. Hot-spot residues at the E9/Im9 interface help binding / via different mechanisms. / Biopolymers, 2008, 89: 916鈥?20 CrossRef
    13. Baron R, Wong SE, de Oliveira CA, McCammon JA. E9-Im9 colicin DNase-immunity protein biomolecular association in water: A multiple-copy and accelerated molecular dynamics simulation study. / J Phys Chem B, 2008, 112: 16802鈥?6814 CrossRef
    14. Bida AT, Gil D, Schrum AG. Multiplex IP-FCM (immunoprecipitation-flow cytometry): Principles and guidelines for assessing physiologic protein-protein interactions in multiprotein complexes. / Methods, 2012, 56: 154鈥?60 CrossRef
    15. Khan SH, Ahmad F, Ahmad N, Flynn DC, Kumar R. Protein-protein interactions: Principles, techniques, and their potential role in new drug development. / J Biomol Struct Dyn, 2011, 28: 929鈥?38 CrossRef
    16. Schreiber G, Fersht AR. Energetics of protein-protein interactions: analysis of the barnase-barstar interface by single mutations and double mutant cycles. / J Mol Biol, 1995, 248: 478鈥?86
    17. Schreiber G, Fersht AR. Rapid, electrostatically assisted association of proteins. / Nat Struct Biol, 1996, 3: 427鈥?31 CrossRef
    18. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P. Comparative assessment of large-scale data sets of protein-protein interactions. / Nature, 2002, 417: 399鈥?03 CrossRef
    19. Muegge I, Schweins T, Warshel A. Electrostatic contributions to protein-protein binding affinities: Application to Rap/Raf interaction. / Proteins, 1998, 30: 407鈥?23 CrossRef
    20. Elcock AH, Sept D, McCammon JA. Computer simulation of protein-protein interactions. / J Phys Chem B, 2001, 105: 1504鈥?518 CrossRef
    21. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. / Nature, 2000, 403: 623鈥?27 CrossRef
    22. Massova I, Kollman PA. Computational alanine scanning to probe protein-protein interactions: A novel approach to evaluate binding free energies. / J Am Chem Soc, 1999, 121: 8133鈥?143 CrossRef
    23. Lee LP, Tidor B. Barstar is electrostatically optimized for tight binding to barnase. / Nat Struct Mol Biol, 2001, 8: 73鈥?6 CrossRef
    24. Dong F, Zhou HX. Electrostatic contribution to the binding stability of protein-protein complexes. / Proteins, 2006, 65: 87鈥?02 CrossRef
    25. Kundrotas PJ, Alexov E. Electrostatic properties of protein-protein complexes. / Biophys J, 2006, 91: 1724鈥?736 CrossRef
    26. Sheinerman FB, Honig B. On the role of electrostatic interactions in the design of protein-protein interfaces. / J Mol Biol, 2002, 318: 161鈥?77 CrossRef
    27. Brock K, Talley K, Coley K, Kundrotas P, Alexov E. Optimization of electrostatic interactions in protein-protein complexes. / Biophys J, 2007, 93: 3340鈥?352 CrossRef
    28. Talley K, Ng C, Shoppell M, Kundrotas P, Alexov E. On the electrostatic component of protein-protein binding free energy. / PMC Biophys, 2008, 1: 2 CrossRef
    29. Xie W, Gao J. The design of a next generation force field: The X-pol potential. / J Chem Theory Comput, 2007, 3: 1890鈥?900 CrossRef
    30. Xie W, Orozco M, Truhlar DG, Gao J. X-pol potential: An electronic structure-based force field for molecular dynamics simulation of a solvated protein in water. / J Chem Theory Comput, 2009, 5: 459鈥?67 CrossRef
    31. Ababou A, van der Vaart A, Gogonea V, Merz KM Jr. Interaction energy decomposition in protein-protein association: A quantum mechanical study of barnase-barstar complex. / Biophys Chem, 2007, 125: 221鈥?36 CrossRef
    32. Ji CG, Zhang JZ. Effect of interprotein polarization on protein-protein binding energy. / J Comput Chem, 2012, 33: 1416鈥?420
    33. Ji CG, Zhang JZ. Protein polarization is critical to stabilizing AF-2 and helix-2鈥?domains in ligand binding to PPAR-gamma. / J Am Chem Soc, 2008, 130: 17129鈥?7133 CrossRef
    34. Ji CG, Zhang JZ. NMR scalar coupling constant reveals that intraprotein hydrogen bonds are dynamically stabilized by electronic polarization. / J Phys Chem B, 2009, 113: 13898鈥?3900 CrossRef
    35. Tong Y, Ji CG, Mei Y, Zhang JZ. Simulation of NMR data reveals that proteins鈥?local structures are stabilized by electronic polarization. / J Am Chem Soc, 2009, 131: 8636鈥?641 CrossRef
    36. Tong Y, Mei Y, Li YL, Ji CG, Zhang JZ. Electrostatic polarization makes a substantial contribution to the free energy of avidin-biotin binding. / J Am Chem Soc, 2010, 132: 5137鈥?142 CrossRef
    37. Chong LT, Duan Y, Wang L, Massova I, Kollman PA. Molecular dynamics and free-energy calculations applied to affinity maturation in antibody 48G7. / Proc Natl Acad Sci USA, 1999, 96: 14330鈥?4335 CrossRef
    38. Cornell WD, Cieplak P, Bayly CI, Kollman PA. Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. / J Am Chem Soc, 1993, 115: 9620鈥?631 CrossRef
    39. Cieplak P, Cornell WD, Bayly C, Kollman PA. Application of the multimolecule and multiconformational RESP methodology to biopolymers: Charge derication for DNA, RNA, and proteins. / J Comput Chem, 1995, 16: 1357鈥?377 CrossRef
    40. Bayly CI, Cieplak P, Cornell WD, Kollman PA. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. / J Phys Chem, 1993, 97: 10269鈥?0280 CrossRef
    41. Ji CG, Mei Y, Zhang JZ. Developing polarized protein-specific charges for protein dynamics: MD free energy calculation of pKa shifts for Asp26/Asp20 in thioredoxin. / Biophys J, 2008, 95: 1080鈥?088 CrossRef
    42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. / Gaussian 03, Revision D.01, Wallingford: Gaussian, Inc., CT, 2003
    43. Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B. Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects. / J Comput Chem, 2002, 23: 128鈥?37 CrossRef
    44. Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker R, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossv谩ry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell S, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA. / AMBER 10. San Francisco: University of California, 2008
    45. Jorgensen WL, Chandrasckhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. / J Chem Phys, 1983, 79: 926鈥?35 CrossRef
    46. Darden T, York D, Pedersen L. Particle mesh Ewald: An / N-log( / N) method for Ewald sums in large systems. / J Chem Phys, 1993, 98: 10089鈥?0092 CrossRef
    47. Sanner MF, Olson AJ, Spehner JC. Reduced surface: An efficient way to compute molecular surfaces. / Biopolymers, 1996, 38: 305鈥?20 CrossRef
    48. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE, 3rd. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. / Acc Chem Res, 2000, 33: 889鈥?97 CrossRef
    49. Massova I, Kollman PA. Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. / Perspect Drug DiscoVery Des, 2000, 18: 113鈥?35 CrossRef
  • 作者单位:XueXia Yao (14877) (24877)
    ChangGe Ji (34877)
    DaiQian Xie (14877)
    John Z. H. Zhang (34877) (44877)

    14877. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
    24877. College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
    34877. State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai, 200062, China
    44877. Department of Chemistry, New York University, New York, NY, 10003, USA
文摘
The binding of Endonuclease colicin 9 (E9) by Immunity protein 9 (Im9) was found to involve some hotspots from helix III of Im9 on protein-protein interface that contribute the dominant binding energy to the complex. In the current work, MD simulations of the WT and three hotspot mutants (D51A, Y54A and Y55A of Im9) of the E9-Im9 complexes were carried out to investigate specific interaction mechanisms of these three hotspot residues. The changes of binding energy between the WT and mutants of the complex were computed by the MM/PBSA method using a polarized force field and were in excellent agreement with experiment values, verifying that these three residues were indeed hotspots of the binding complex. Energy decomposition analysis revealed that binding by D51 to E9 was dominated by electrostatic interaction due to the presence of the carboxyl group of Asp51 which hydrogen bonds to K89. For binding by hotspots Y54 and Y55, van der Waals interaction from the aromatic side chain of tyrosine provided the dominant interaction. For comparison, calculation by using the standard (nonpolarizable) AMBER99SB force field produced binding energy changes from these mutations in opposite direction to the experimental observation. Dynamic hydrogen bond analysis showed that conformations sampled from MD simulation in the standard AMBER force field were distorted from the native state and they disrupted the inter-protein hydrogen bond network of the protein-protein complex. The current work further demonstrated that electrostatic polarization plays a critical role in modulating protein-protein binding.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700