Identifying and Characterizing Resting State Networks in Temporally Dynamic Functional Connectomes
详细信息    查看全文
  • 作者:Xin Zhang (1) (2)
    Xiang Li (2)
    Changfeng Jin (3)
    Hanbo Chen (2)
    Kaiming Li (1) (2)
    Dajiang Zhu (2)
    Xi Jiang (2)
    Tuo Zhang (1) (2)
    Jinglei Lv (1) (2)
    Xintao Hu (1)
    Junwei Han (1)
    Qun Zhao (4)
    Lei Guo (1)
    Lingjiang Li (3)
    Tianming Liu (2)
  • 关键词:Resting state network (RSN) ; Brain dynamics ; DICCCOL ; Structural connectome ; Functional connectome
  • 刊名:Brain Topography
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:27
  • 期:6
  • 页码:747-765
  • 全文大小:19,973 KB
  • 参考文献:1. Aertsen AM, Gerstein GL, Habib MK, Palm G (1989) Dynamics of neuronal firing correlation: modulation of 鈥渆ffective connectivity鈥? J Neurophysiol 61(5):900鈥?17
    2. Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24:663鈥?76 CrossRef
    3. Assal M, Jagannathan K, Calhoun VD, Miller L, Stevens MC, Sahl R, O鈥橞oyle JG, Schultz RT, Pearlson GD (2010) Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage 53(1):247鈥?56 CrossRef
    4. Beckman CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360(1457):1001鈥?013 CrossRef
    5. Bickel S, Scheffer T (2004) Multi-view clustering. Proceeding of the IEEE international conference on data mining
    6. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MR. Magn Reson Med 34(4):537鈥?41 CrossRef
    7. Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-training. In: Conference on learning theory
    8. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain鈥檚 default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1鈥?8 CrossRef
    9. Buzs谩ki G, Chen LS, Gage FH (1990) Spatial organization of physiological activity in the hippocampal region: relevance to memory formation. Prog Brain Res 83:257鈥?68 CrossRef
    10. Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp 14(3):140鈥?51 CrossRef
    11. Chang C, Glover GH (2010) Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage 50:81鈥?8 CrossRef
    12. Chaudhuri K, Kakade SM, Livescu K, Sridharan K (2009) Multi-view clustering via canonical correlation analysis. In: International conference on machine learning
    13. Chen H, Li K, Zhu D, Jiang X, Yuan Y, Lv P, Zhang T, Guo L, Shen D, Liu T (2013) Inferring group-wise consistent multimodal brain networks via multi-view spectral clustering. IEEE Trans on Med Imaging 32(9):1576鈥?586 CrossRef
    14. Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2000) Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am J Neuroradiol 21(9):1636鈥?644
    15. Cordes D, Haughton VM, Carew JD, Arfanakis K, Maravilla K (2012) Hierarchical clustering to measure connectivity in fMRI resting-state data. Magn Reson Imaging 20(4):305鈥?17 CrossRef
    16. Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Nat Acad Sci USA 103(37):13848鈥?3853 CrossRef
    17. De Luca M, Smith S, De Stefano N, Matthews PM (2005) Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Exp Brain Res 167(4):587鈥?94 CrossRef
    18. De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. NeuroImage 29(4):1359鈥?367 CrossRef
    19. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE TIP 15(12):3736鈥?745
    20. Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1993) Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13(1):5鈥?4 CrossRef
    21. Gembris D, Taylor JG, Schor S, Frings W, Suter D, Posse S (2000) Functional magnetic resonance imaging in real time (FIRE): sliding-window correlation analysis and reference-vector optimization. Magn Reson Med 43:259鈥?68 CrossRef
    22. Gilbert CD, Sigman M (2007) Brain states: top-down influences in sensory processing. Neuron 54(9):677鈥?96 CrossRef
    23. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Nati Acad Sci USA 100(1):253鈥?58 CrossRef
    24. Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer鈥檚 disease from healthy aging: evidence from functional MRI. Proc Nati Acad Sci USA 101(13):4637鈥?642 CrossRef
    25. Hampson M, Olson IR, Leung HC, Skudlarski P, Gore JC (2004) Changes in functional connectivity of human MT/V5 with visual motion input. NeuroReport 15(8):1315鈥?319 CrossRef
    26. Jiang T, He Y, Zang Y, Weng X (2004) Modulation of functional connectivity during the resting state and the motor task. Hum Brain Mapp 22(1):63鈥?1 CrossRef
    27. K枚hler S, Crane J, Milner B (2002) Differential contributions of the parahippocampal place area and the anterior hippocampus to human memory for scenes. Hippocampus 12(6):718鈥?23 CrossRef
    28. Kumar A, Daum茅 H (2011) A co-training approach for multi-view spectral clustering. ICML-11
    29. Larson-Prior LJ, Zempel JM, Nolan TS, Prior FW, Snyder AZ, Raichle ME (2009) Cortical network functional connectivity in the descent to sleep. Proc Natl Acad Sci USA 106(11):4489鈥?494 CrossRef
    30. Li X, Zhu D, Jiang X, Jin C, Zhang X, Guo L, Zhang J, Hu X, Li L, Liu T (2013) Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients. Hum Brain Mapp. doi:10.1002/hbm.22290
    31. Lowe MJ, Mock BJ, Sorenson JA (1998) Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7(2):119鈥?32 CrossRef
    32. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. Med Imaging IEEE Trans 16(2):187鈥?98 CrossRef
    33. Mairal J, Elad M, Sapiro G (2008) Sparse representation for color image restoration. IEEE TIP 17(1):53鈥?9
    34. Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A (2009) Non-local sparse models for image restoration. ICCV
    35. Packard MG, Knowlton BJ (2002) Learning and memory functions of the basal ganglia. Annu Rev Neurosci 25:563鈥?93 CrossRef
    36. Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37(4):1083鈥?090 CrossRef
    37. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676鈥?82 CrossRef
    38. Sako臒lu 脺, Pearlson G, Kiehl K, Wang YM, Michael A, Calhoun V (2010) A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia. Magn Reson Mater Phys Biol Med 23:351鈥?66 CrossRef
    39. Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6(2):461鈥?64 CrossRef
    40. Shi J, Malik J (2000) Normalized cuts and image segmentation. Pattern Anal Mach Intel IEEE Trans 22(8):888鈥?05 CrossRef
    41. Smith SM, Miller KL, Moeller S, Xu J, Auerbach EJ, Woolrich MW, Beckmann CF, Jenkinson M, Andersson J, Glasser MF, Van Essen DC, Feinberg DA, Yacoub ESM, Ugurbil K (2012) Temporally-independent functional modes of spontaneous brain activity. Proc Natl Acad Sci USA 109:3131鈥?136 CrossRef
    42. Sorg C, Riedl V, M眉hlau M, Calhoun VD, Eichele T, L盲er L, Drzezga A, F枚rstl H, Kurz A, Zimmer C, Wohlschl盲ger AM (2007) Selective changes of resting-state networks in individuals at risk for Alzheimer鈥檚 disease. Proc Natl Acad Sci USA 104(47):18760鈥?8765 CrossRef
    43. Squire LR, Schacter DL (2002) The neuropsychology of memory. Guilford Press, New York, USA
    44. Starck J, Elad M, Donoho D (2005) Image decomposition via the combination of sparse representation and a variational approach. IEEE Trans Image Process 14(10):1570鈥?582 CrossRef
    45. Thirion B, Dodel S, Poline JB (2006) Detection of signal synchronizations in resting-state fMRI datasets. Neuroimage 29(1):321鈥?27 CrossRef
    46. Van den Heuvel M, Mandl R, Hulshoff Pol H (2008) Normalized cut group clustering of resting-state fMRI data. PLos ONE 3(4):e2001 CrossRef
    47. Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395鈥?16 CrossRef
    48. Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan S (2010) Sparse representation for computer vision and pattern recognition. PIEEE 98(6):1031鈥?044
    49. Yang J, Yu K, Gong Y, Huang T (2009) Linear spatial pyramid matching using sparse coding for image classification. CVPR
    50. Yang M, Zhang L, Feng X, Zhang D (2011) Fisher discrimination dictionary learning for sparse representation. ICCV
    51. Yuan Y, Jiang X, Zhu D, Chen H, Li K, Lv P, Yu X, Li X, Zhang S, Zhang T, Hu X, Han J, Guo L, Liu T (2013) Meta-analysis of functional roles of DICCCOLs. Neuroinformatics 11(1):47鈥?3
    52. Zhang Q, Li BX (2010) Discriminative K-SVD for dictionary learning in face recognition. CVPR
    53. Zhang X, Guo L, Li X, Zhu D, Li K, Sun Z, Jin C, Hu X, Han J, Zhao Q, Li L, Liu T (2012) Characterization of task-free/task-performance Brain States. MICCAI, Nice, France
    54. Zhang X, Guo L, Li X, Zhang T, Zhu D, Li K, Chen H, Lv J, Jin C, Zhao Q, Li L, Liu T (2013) Characterization of task-free and task-performance brain states via functional connectome patterns. Med Image Anal 17(8):1106鈥?122 CrossRef
    55. Zhu D, Li K, Faraco CC, Deng F, Zhang D, Jiang X, Chen H, Guo L, Miller LS, Liu T (2011) Optimization of functional brain ROIs via maximization of consistency of structural connectivity profiles. NeuroImage 59(2):1382鈥?393 CrossRef
    56. Zhu D, Li K, Guo L, Jiang X, Zhang T, Zhang D, Chen H, Deng F, Faraco C, Jin C, Wee CY, Yuan Y, Lv P, Yin Y, Hu X, Duan L, Hu X, Han J, Wang L, Shen D, Miler LS, Li L, Liu T (2012) DICCCOL: dense Individualized and common connectivity-based cortical landmarks. Cereb Cortex 23(4):786鈥?00 CrossRef
  • 作者单位:Xin Zhang (1) (2)
    Xiang Li (2)
    Changfeng Jin (3)
    Hanbo Chen (2)
    Kaiming Li (1) (2)
    Dajiang Zhu (2)
    Xi Jiang (2)
    Tuo Zhang (1) (2)
    Jinglei Lv (1) (2)
    Xintao Hu (1)
    Junwei Han (1)
    Qun Zhao (4)
    Lei Guo (1)
    Lingjiang Li (3)
    Tianming Liu (2)

    1. School of Automation, Northwestern Polytechnical University, Xi鈥檃n, China
    2. Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA
    3. The Mental Health Institute, The Second Xiangya Hospital of Central South University, Changsha, China
    4. Department of Physics and Astronomy and Bioimaging Research Center, The University of Georgia, Athens, GA, USA
  • ISSN:1573-6792
文摘
An important application of resting state fMRI data has been to identify resting state networks (RSN). The conventional RSN studies attempted to discover consistent networks through functional connectivity analysis over the whole scan time, which implicitly assumes that RSNs are static. However, the brain undergoes dynamic functional state changes and the functional connectome patterns vary along with time, even in resting state. Hence, this study aims to characterize temporal brain dynamics in resting state. It utilizes the temporally dynamic functional connectome patterns to extract a set of resting state clusters and their corresponding RSNs based on the large-scale consistent, reproducible and predictable whole-brain reference system of dense individualized and common connectivity-based cortical landmarks (DICCCOL). Especially, an effective multi-view spectral clustering method was performed by treating each dynamic functional connectome pattern as one view, and this procedure was also applied on static multi-subject functional connectomes to obtain the static clusters for comparison. It turns out that some dynamic clusters exhibit high similarity with static clusters, suggesting the stability of those RSNs including the visual network and the default mode network. Moreover, two motor-related dynamic clusters show correspondence with one static cluster, which implies substantially more temporal variability of the motor resting network. Particularly, four dynamic clusters exhibited large differences in comparison with their corresponding static networks. Thus it is suggested that these four networks might play critically important roles in functional brain dynamics and interactions during resting state, offering novel insights into the brain function and its dynamics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700