Single copy nuclear gene analysis of polyploidy in wild potatoes (Solanum section Petota)
详细信息    查看全文
  • 作者:Danying Cai (1) (2)
    Flor Rodríguez (2) (3)
    Yuanwen Teng (1)
    Cécile Ané (4)
    Meredith Bonierbale (5)
    Lukas A Mueller (6)
    David M Spooner (2)
  • 刊名:BMC Evolutionary Biology
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:12
  • 期:1
  • 全文大小:286KB
  • 参考文献:1. Goldblatt P: Polyploidy in angiosperms: monocotyledons. In / Polyploidy: biological relevance. Edited by: Lewis WH. Plenum Press, New York; 1980:219-39.
    2. Lewis WH: Polyploidy in angiosperms: dicotyledons. In / Polyploidy: biological relevance. Edited by: Lewis WH. Plenum Press, New York; 1980:241-68.
    3. Wendel JF: Genome evolution in polyploids. / Plant Mol Biol 2000, 42:225-49. CrossRef
    4. Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Patterson AH, Zheng C, Sankoff D, DePamphilis CW, Wall PK, Soltis PS: Polyploidy and angiosperm diversification. / Amer J Bot 2009, 96:336-48. CrossRef
    5. Soltis PS, Soltis DE: The role of genetic and genomic attributes in the success of polyploids. / Proc Nat Acad Sci USA 2000, 97:7051-057. CrossRef
    6. Wolfe KH: Yesterday’s polyploidization and mystery of diploidization. / Nat Rev Genet 2001, 2:333-41. CrossRef
    7. Adams KL, Cronn R, Percifield R, Wendel JF: Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. / Proc Nat Acad Sci USA 2003, 100:4649-654. CrossRef
    8. Comai L: The advantages and disadvantages of being polyploid. / Nature Rev Genet 2005, 6:836-46. CrossRef
    9. Otto SP: The evolutionary consequences of polyploidy. / Cell 2007, 131:452-62. CrossRef
    10. Sémon M, Wolfe KH: Consequences of genome duplication. / Curr Opin Genetics Dev 2007, 17:505-12. CrossRef
    11. Tate JA, Joshi P, Soltis KA, Soltis PS, Soltis DE: On the road to diploidization? Homoeolog loss in independently formed populations of the allopolyploid Tragopogon miscellus (Asteraceae). / BMC Plant Biol 2009, 9:80. CrossRef
    12. Doyle JJ, Egan AN: Dating the origins of polyploidy events. / New Phytol 2010, 186:73-5. CrossRef
    13. Chen ZJ: Molecular mechanisms of polyploidy and hybrid vigor. / Trends Plant Sci 2010, 15:57-1. CrossRef
    14. Carputo D, Camadro EL, Peloquin SJ: Terminology for polyploids based on their cytogenetic behavior: consequences in genetics and breeding. / Plant Breed Rev 2006, 26:105-24.
    15. Soltis DE, Soltis PS: Molecular data and the dynamic nature of polyploidy. / Crit Rev Plant Sci 1993, 12:243-73.
    16. Soltis DE, Soltis PS: Polyploidy: recurrent formation and genome evolution. / Trends Ecol Evol 1999, 14:348-52. CrossRef
    17. Segraves KA, Thompson JN, Soltis DE, Soltis PS: Multiple origins of polyploidy and the geographic structure of Heuchera grossulariifolia. / Mol Ecol 1999, 8:253-62. CrossRef
    18. Vanichanon A, Blake NK, Sherman JD, Talbert LE: Multiple origins of allopolyploid Aegilops triuncialis. / Theor Appl Genet 2003, 106:804-10.
    19. Albach DC: Amplified fragment length polymorphisms and sequence data in the phylogenetic analysis of polyploids: multiple origins of Veronica cymbalaria (Plantaginaceae). / New Phytol 2007, 176:481-98. CrossRef
    20. Grubbs KC, Small RL, Schilling EE: Evidence for multiple, autoploid origins of agamospermous populations in Eupatorium sessilifolium (Asteraceae). / Plant Syst Evol 2009, 279:151-61. CrossRef
    21. Meimberg H, Njoku CC, McKay JK, Rice KJ, Milan NF: Multiple origins promote the ecological amplitude of allopolyploid Aegilops (Poaceae). / Amer J Bot 2009, 96:1262-273. CrossRef
    22. Werth CR, Guttman SI, Eshbaugh WH: Recurring origins of allopolyploid species in Asplenium. / Science 1985, 228:731-33. CrossRef
    23. Soltis PS, Plunkett GM, Novak SJ, Soltis DE: Genetic variation in Tragopogon species: additional origins of the allotetraploids T. mirus and T. miscellus (Compositae). / Amer J Bot 1995, 82:1329-341. CrossRef
    24. Soltis DE, Soltis PS, Pires JC, Kovarik A, Tate J, Mavrodiev E: Recent and recurrent polyploidy in Tragopogon (Asteraceae): genetics, genomic, and cytogenetic comparisons. / Biol J Linn Soc 2004, 82:485-01. CrossRef
    25. Spooner DM, Nú?ez J, Trujillo G, del Rosario Herrera M, Guzmán F, Ghislain M: Extensive simple sequence repeat genotyping of potato landraces supports a major reevaluation of their gene pool structure and classification. / Proc Natl Acad Sci USA 2007, 104:19398-9403. CrossRef
    26. Ovchinnikova A, Krylova E, Gavrilenko T, Smekalova T, Zhuk M, Knapp S, Spooner DM: Taxonomy of cultivated potatoes (Solanum section Petota: Solanaceae). / Bot J Linn Soc 2011, 165:107-55. CrossRef
    27. Spooner DM: DNA barcoding will frequently fail in complicated groups: an example in wild potatoes. / Amer J Bot 2009, 96:1177-189. CrossRef
    28. Hijmans R, Gavrilenko T, Stephenson S, Bamberg J, Salas A, Spooner DM: Geographic and environmental range expansion through polyploidy in wild potatoes (Solanum section Petota). / Global Ecol Biogeogr 2007, 16:485-95. CrossRef
    29. Hawkes JG: / The potato: evolution, biodiversity, and genetic resources. Belhaven Press, Washington, DC; 1990.
    30. Hanneman RE: Assignment of endosperm balance numbers to the tuberbearing Solanums and their close non-tuber bearing relatives. / Euphytica 1994, 74:19-5. CrossRef
    31. Spooner DM, Castillo R: Reexamination of series relationships of South American wild potatoes (Solanaceae: Solanum sect. Petota): evidence from chloroplast DNA restriction site variation. / Amer J Bot 1997, 84:671-85. CrossRef
    32. Spooner DM, Rodríguez F, Polgár Z, Ballard HE, Jansky SH: Genomic origins of potato polyploids: GBSSI gene sequencing data. / The Plant Genome, a Suppl to Crop Sci 2008,48(Suppl 1):S27-S36.
    33. Rodríguez F, Spooner DM: Nitrate reductase phylogeny of potato (Solanum sect. Petota) genomes with emphasis on the origins of the polyploid species. / Syst Bot 2009, 34:207-19. CrossRef
    34. Rodríguez F, Wu F, Ané C, Tanksley S, Spooner DM: Do potatoes and tomatoes have a single evolutionary history, and what proportion of the genome supports this history? / BMC Evol Biol 2009, 9:191. CrossRef
    35. Ames M, Spooner DM: Phylogeny of Solanum series Piurana and related species in Solanum section Petota based on five conserved ortholog sequences. / Taxon 2010, 59:1091-104 + 4pg. foldout.
    36. Fajardo D, Spooner DM: Phylogenetic relationships of Solanum series Conicibaccata and related species in Solanum section Petota inferred from five conserved ortholog sequences. / Syst Bot 2011, 36:163-70. CrossRef
    37. Rodríguez F, Ghislain M, Clausen AM, Jansky SH, Spooner DM: Hybrid origins of cultivated potatoes. / Theor Appl Genet 2010, 121:1187-198. CrossRef
    38. Peralta IE, Spooner DM, Knapp S: The taxonomy of tomatoes: a revision of wild tomatoes (Solanum section Lycopersicon) and their outgroup relatives in sections Juglandifolium and Lycopersicoides. / Syst Bot Monogr 2008, 84:1-86 + 3 plates.
    39. Spooner DM, Van den Berg RG, Bamberg JB: Examination of species boundaries of Solanum series Demissa and potentially related species in series Acaulia and series Tuberosa (sect. Petota). / Syst Bot 1995, 20:295-14. CrossRef
    40. Kardolus JP: Morphological variation within series Acaulia Juz. (Solanum sect. Petota). In / Solanaceae IV: advances in biology and utilization. Edited by: Nee M, Symon DE, Lester RN, Jessop JP. Royal Botanic Gardens, Kew; 1999:257-74.
    41. Nakagawa K, Hosaka K: Species relationships between a wild tetraploid potato species, Solanum acaule Bitter, and its related species as revealed by RFLPs of chloroplast and nuclear DNA. / Amer J Potato Res 2002, 79:85-8. CrossRef
    42. Spooner DM, Van den Berg RG, Rodríguez A, Bamberg J, Hijmans RJ, Lara-Cabrera SI: Wild potatoes (Solanum section Petota) of North and Central America. / Syst Bot Monogr 2004, 68:1-09. CrossRef
    43. Matsubayashi M: Phylogenetic relationships in the potato and its related species. In / Chromosome engineering in plants: genetics, breeding, evolution, part B. Edited by: Tsuchiya T, Gupta PK. Elsevier Science BV, Amsterdam; 1991:93-18.
    44. Pendinen G, Gavrilenko T, Jiang J, Spooner DM: Allopolyploid speciation of the tetraploid Mexican potato species Solanum stoloniferum and S. hjertingii revealed by genomic in situ hybridization. / Genome 2008, 51:714-20. CrossRef
    45. Wu FN, Mueller LA, Crouzillat D, Petiard V, Tanksley SD: Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. / Genetics 2006, 174:1407-420. CrossRef
    46. Levin RA, Whelan A, Miller JS: The utility of nuclear conserved ortholog set II (COSII) genomic regions for species-level phylogenetic inference in Lycium (Solanaceae). / Mol Phylogenet Evol 2009, 53:881-90. CrossRef
    47. Zhou L, Yang CF, Xiao LH: PCR-mediated recombination between Cryptosporidium spp. of lizards and snakes. / J Eukaryot Microbiol 2003, 50:563-65. CrossRef
    48. Ortí G, Hare MP, Avise JC: Detection and isolation of nuclear haplotypes by SSCP. / Mol Ecol 1997, 6:575-80. CrossRef
    49. Rodríguez F, Cai D, Teng Y, Spooner DM: Asymmetric single-strand conformation polymorphism: an accurate and cost-effective method to amplify and sequence allelic variants. / Amer J Bot 2011, 98:1061-067. CrossRef
    50. Hosaka K, Spooner DM: RFLP analysis of the wild potato species, Solanum acaule Bitter (Solanum sect. Petota). / Theor Appl Genet 1992, 84:851-58. CrossRef
    51. Kardolus JP: A biosystematic analysis of Solanum acaule. In / Ph.D. Thesis. Wageningen Agricultural University, Wageningen, The Netherlands; 1998.
    52. Valcárcel V, Fiz O, Vargas P: Chloroplast and nuclear evidence for multiple origins of polyploids and diploids of Hedera (Araliaceae) in the Mediterranean basin. / Molec Phylo Evol 2003, 27:1-0. CrossRef
    53. Ashton PA, Abbott RJ: Multiple origins and genetic diversity in the newly arisen allopolyploid species, Senecio cambrensis Rosser (Compositae). / Heredity 1992, 68:25-2. CrossRef
    54. Brochmann C, Soltis PS, Soltis DE: Multiple origins of the octoploid Scandinavian endemic Draba cacuminum: electrophoretic and morphological evidence. / Nordic J Bot 1992, 12:257-72. CrossRef
    55. Doyle JJ, Doyle JL, Brown AHD, Palmer RG: Genomes, multiple origins, and lineage recombination in the Glycine tomentella (Leguminosae) polyploid complex: histone H3-D gene sequences. / Evolution 2002, 56:1388-402.
    56. Rauscher JT, Doyle JJ, Brown AHD: Multiple origins and nrDNA internal transcribed spacer homeologue evolution in the Glycine tomentella (Leguminosae) allopolyploid complex. / Genetics 2004, 166:987-98. CrossRef
    57. Wyatt R, Odrzykoski IJ, Stoneburner A, Bass HW, Galau GA: Allopolyploidy in bryophytes: multiple origins of Plagiomnium medium. / Proc Natl Acad Sci USA 1988, 85:5601-604. CrossRef
    58. Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC: Genomic changes in resynthesized Brassica napus and their effects on gene expression and pheontype. / Plant Cell 2007, 19:3403-417. CrossRef
    59. Stupar RM, Bhaskar PB, Yandell BS, Rensink WA, Hart AL, Ouyang S, Veilleux RE, Busse JS, Erhardt RJ, Buell CR, Jiang J: Phenotypic and transcriptional changes associated with potato autopolyploidization. / Genetics 2007, 176:2055-067. CrossRef
    60. Doyle JJ, Flagel LE, Patterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF: Evolutionary genetics of genome merger in plants. / Ann Rev Genet 2008, 42:443-61. CrossRef
    61. Rieseberg L, Willis JH: Plant speciation. / Science 2007, 317:910-14. CrossRef
    62. Soltis DE, Soltis PS, Schemske DW, Hancock JF, Thompson JN, Husband BC, Judd WS: Have we grossly underestimated the number of species? / Taxon 2007, 56:13-0.
    63. Knowles LL, Kubatko LS S (Eds): / Estimating species trees: practical and theoretical aspects. Wiley-Blackwell, Hoboken, New Jersey; 2010.
    64. Buggs RJA, Renny-Byfield S, Chester M, Jordon-Thaden IE, Viccini LF, Chamala S, Leitch AR, Schnable PS, Barbazuk WB, Soltis PS, Soltis DE: Next-generation sequencing and genome evolution in allopolyploids. / Amer J Bot 2012, 99:372-82. CrossRef
    65. The Potato Sequencing Consortium: Genome sequence and analysis of the tuber crop potato. / Nature 2011, 475:189-97. CrossRef
    66. Doyle J: DNA protocols for plants-CTAB total DNA isolation. In / Molecular techniques in taxonomy. Edited by: Hewitt GM, Johnston A. Springer, Berlin; 1991:283-93. CrossRef
    67. Posada D, Crandall KA: Modeltest: testing the model of DNA substitution. / Bioinformatics 1998, 14:817-18. CrossRef
    68. Staden R: The Staden sequence analysis package. / Mol Biotechnol 1996, 5:233-41. CrossRef
    69. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. / Nucleic Acids Res 1997, 24:4876-882. CrossRef
    70. Maddison DR, Maddison WP: / MacClade 4.03: Analysis of phylogeny and character evolution. Sinauer Associates, Suderland; 2001.
    71. Heled J, Drummond AJ: Bayesian inference of species trees from multilocus data. / Mol Biol Evol 2010, 27:570-80. CrossRef
    72. Paradis E, Claude J, Strimmer K: APE: analyses of phylogenetics and evolution in R language. / Bioinformatics 2004, 20:289-90. CrossRef
    73. R Development Core Team: / R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2011. ISBN 3-00051-7-, URL http://www.R-project.org/.
    74. Liu L, Yu L: Estimating species trees from unrooted gene trees. / Syst Biol 2011, 65:661-67. CrossRef
    75. Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. / Mol Biol Evol 1987, 4:406-25.
    76. Desper R, Gascuel O: Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. / J Comput Biol 2002, 9:687-05. software available: www.atgc-montpellier.fr/fastme/ CrossRef
    77. Gascuel O, Steel M: Neighbor-joining revealed. / Mol Biol Evol 2006, 23:1997-000. CrossRef
    78. Desper R, Gascuel O: Theoretical foundation of the balanced minimum evolution method of phylogenetic inference and its relationship to weighted least-squares tree fitting. / Mol Biol Evol 2004, 21:587-98. CrossRef
  • 作者单位:Danying Cai (1) (2)
    Flor Rodríguez (2) (3)
    Yuanwen Teng (1)
    Cécile Ané (4)
    Meredith Bonierbale (5)
    Lukas A Mueller (6)
    David M Spooner (2)

    1. Department of Horticulture, the State Agricultural Ministry Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, China
    2. Department of Horticulture, USDA, Agricultural Research Service, University of Wisconsin, 1575 Linden Drive, Madison, WI, 53706-1590, USA
    3. Centro Regional de Investigación Remehue, INIA, Xa Región de los Lagos, Km 8 Norte, Ruta 5 Sur, Casilla de Correos 24-O, Osorno, Chile
    4. Departments of Botany and of Statistics, University of Wisconsin-Madison, 1300 University Ave, Madison, WI, 53706-1590, USA
    5. International Potato Center, P.O. Box 1558, Lima, 12, Peru
    6. Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, 14853, USA
文摘
Background Recent genomic studies have drastically altered our knowledge of polyploid evolution. Wild potatoes (Solanum section Petota) are a highly diverse and economically important group of about 100 species widely distributed throughout the Americas. Thirty-six percent of the species in section Petota are polyploid or with diploid and polyploid cytotypes. However, the group is poorly understood at the genomic level and the series is ideal to study polyploid evolution. Two separate studies using the nuclear orthologs GBSSI and nitrate reductase confirmed prior hypotheses of polyploid origins in potato and have shown new origins not proposed before. These studies have been limited, however, by the use of few accessions per polyploid species and by low taxonomic resolution, providing clade-specific, but not species-specific origins within clades. The purpose of the present study is to use six nuclear orthologs, within 54 accessions of 11 polyploid species, 34 accessions of 29 diploid species of section Petota representing their putative progenitors, and two outgroups, to see if phenomena typical of other polyploid groups occur within wild potatoes, to include multiple origins, loss of alleles, or gain of new alleles. Results Our results increase resolution within clades, giving better ideas of diploid progenitors, and show unexpected complexity of allele sharing within clades. While some species have little diversity among accessions and concur with the GBSSI and nitrate reductase results, such as S. agrimonifolium, S. colombianum, S. hjertingii, and S. moscopanum, the results give much better resolution of species-specific progenitors. Seven other species, however, show variant patterns of allele distributions suggesting multiple origins and allele loss. Complex three-genome origins are supported for S. hougasii, and S. schenckii, and one of the ten accessions of S. stoloniferum. A very unexpected shared presence of alleles occurs within one clade of S. verrucosum from Central America, and S. berthaultii from South America in six polyploid species S. demissum, S. hjertingii, S. hougasii, S. iopetalum, S. schenckii, and S. stoloniferum. Conclusions Our results document considerable genomic complexity of some wild potato polyploids. These can be explained by multiple hybrid origins and allele losses that provide a clear biological explanation for the taxonomic complexity in wild potato polyploids. These results are of theoretical and practical benefit to potato breeders, and add to a growing body of evidence showing considerable complexity in polyploid plants in general.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700