Computational identification of novel microRNAs and targets in Glycine max
详细信息    查看全文
  • 作者:Na Guo (1)
    Wenwu Ye (2)
    Qiang Yan (1)
    Jing Huang (1)
    Yuren Wu (2)
    Danyu Shen (2)
    Junyi Gai (1)
    Daolong Dou (2)
    Han Xing (1)
  • 关键词:Glycine max ; miRNA prediction ; Expressed sequence tags ; Target analysis
  • 刊名:Molecular Biology Reports
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:41
  • 期:8
  • 页码:4965-4975
  • 全文大小:637 KB
  • 参考文献:1. Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of / Arabidopsis miRNA. Science 297:2053-056 CrossRef
    2. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281-97 CrossRef
    3. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669-87 CrossRef
    4. Yu B, Wang H (2010) Translational inhibition by microRNAs in plants. Prog Mol Subcell Biol 50:41-7 CrossRef
    5. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19-3 CrossRef
    6. Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243-59 CrossRef
    7. Wang XJ, Reyes JL, Chua NH, Gaasterland T (2004) Prediction and identification of / Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5:R65 CrossRef
    8. Han Y, Luan F, Zhu H, Shao Y, Chen A, Lu C, Luo Y, Zhu B (2009) Computational identification of microRNAs and their targets in wheat ( / Triticum aestivum L.). Sci China Life Sci 52:1091-100 CrossRef
    9. Zhang B, Wang Q, Wang K, Pan X, Liu F, Guo T, Cobb GP, Anderson TA (2007) Identification of cotton microRNAs and their targets. Gene 397:26-7 CrossRef
    10. Zhang B, Pan X, Stellwag EJ (2008) Identification of soybean microRNAs and their targets. Planta 229:161-82 CrossRef
    11. Zhang B, Pan X, Anderson TA (2006) Identification of 188 conserved maize microRNAs and their targets. FEBS Lett 580:3753-762 CrossRef
    12. Xie FL, Huang SQ, Guo K, Xiang AL, Zhu YY, Nie L, Yang ZM (2007) Computational identification of novel microRNAs and targets in / Brassica napus. FEBS Lett 581:1464-474 CrossRef
    13. Subramanian S, Fu Y, Sunkar R, Barbazuk WB, Zhu JK, Yu O (2008) Novel and nodulation-regulated microRNAs in soybean roots. BMC Genom 9:160 CrossRef
    14. Wang Y, Li P, Cao X, Wang X, Zhang A, Li X (2009) Identification and expression analysis of miRNAs from nitrogen-fixing soybean nodules. Biochem Biophys Res Commun 378:799-03 CrossRef
    15. Joshi T, Yan Z, Libault M, Jeong DH, Park S, Green PJ, Sherrier DJ, Farmer A, May G, Meyers BC, Xu D, Stacey G (2010) Prediction of novel miRNAs and associated target genes in / Glycine max. BMC Bioinform 11(Suppl 1):S14 CrossRef
    16. Song QX, Liu YF, Hu XY, Zhang WK, Ma B, Chen SY, Zhang JS (2011) Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biol 11:5 CrossRef
    17. Chen R, Hu Z, Zhang H (2009) Identification of microRNAs in wild soybean ( / Glycine soja). J Integr Plant Biol 51:1071-079 CrossRef
    18. Guo N, Ye WW, Wu XL, Shen DY, Wang YC, Xing H, Dou DL (2011) Microarray profiling reveals microRNAs involving soybean resistance to / Phytophthora sojae. Genome 54(11):954-58 CrossRef
    19. Kulcheski FR, de Oliveira LF, Molina LG, Almerao MP, Rodrigues FA, Marcolino J, Barbosa JF, Stolf-Moreira R, Nepomuceno AL, Marcelino-Guimaraes FC, Abdelnoor RV, Nascimento LC, Carazzolle MF, Pereira GA, Margis R (2011) Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genom 12:307 CrossRef
    20. Grad Y, Aach J, Hayes GD, Reinhart BJ, Church GM, Ruvkun G, Kim J (2003) Computational and experimental identification of / C. elegans microRNAs. Mol Cell 11:1253-263 CrossRef
    21. Lai EC, Tomancak P, Williams RW, Rubin GM (2003) Computational identification of / Drosophila microRNA genes. Genome Biol 4:R42 CrossRef
    22. Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP (2003) The microRNAs of / Caenorhabditis elegans. Genes Dev 17:991-008 CrossRef
    23. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from / Arabidopsis. Plant Cell 16:2001-019 CrossRef
    24. Fu HJ, Zhu J, Yang M, Zhang ZY, Tie Y, Jiang H, Sun ZX, Zheng XF (2006) A novel method to monitor the expression of microRNAs. Mol Biotechnol 32:197-04 CrossRef
    25. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178-83 CrossRef
    26. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406-415 CrossRef
    27. Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in / Populus trichocarpa that are absent from / Arabidopsis. Plant Cell 17:2186-203 CrossRef
    28. Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159 CrossRef
    29. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20:3186-190 CrossRef
    30. Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA (2006) Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci 63:246-54 CrossRef
    31. Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon GJ, Qi Y (2008) Sorting of small RNAs into / Arabidopsis argonaute complexes is directed by the 5-terminal nucleotide. Cell 133:116-27 CrossRef
    32. Padmanabhan C, Zhang X, Jin H (2009) Host small RNAs are big contributors to plant innate immunity. Curr Opin Plant Biol 12:1- CrossRef
    33. Zhu C, Ding Y, Liu H (2011) MiR398 and plant stress responses. Physiol Plant 143(1):1- CrossRef
    34. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787-99 CrossRef
    35. Bonnet E, Wuyts J, Rouze P, Van de Peer Y (2004) Detection of 91 potential conserved plant microRNAs in / Arabidopsis thaliana and / Oryza sativa identifies important target genes. Proc Natl Acad Sci USA 101:11511-1516 CrossRef
    36. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312(5772):436-39 CrossRef
    37. Li Y, Zhang Q, Zhang J, Wu L, Qi Y, Zhou JM (2010) Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 152(4):2222-223 CrossRef
  • 作者单位:Na Guo (1)
    Wenwu Ye (2)
    Qiang Yan (1)
    Jing Huang (1)
    Yuren Wu (2)
    Danyu Shen (2)
    Junyi Gai (1)
    Daolong Dou (2)
    Han Xing (1)

    1. National Center for Soybean Improvement/National Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
    2. Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
  • ISSN:1573-4978
文摘
Plant miRNAs, the endogenous non-coding small RNAs of about 20-4 nucleotides, play important roles in multiple biological processes by acting as negative regulators of their targeted mRNAs. Soybean (Glycine max (L.) Merr.) is one of the important oil crops of the world, in which many miRNAs have been obtained through the computational prediction or experiments. However, the miRNA genes identified for soybean are still far from saturation, and their biological functions are largely unknown. Here, a total of 48 candidates of miRNAs were identified following a range of strict filtering criteria. Detailed sequence analysis showed that G. max pre-miRNAs vary in length from 47 to 380 nt, embody mature miRNAs that differ in their physical location within the pre-miRNAs. In this study, twenty miRNAs were confirmed by microarray and three miRNAs were further validated by poly(A)-tailed RT-PCR. Comparative sequence analysis of soybean miRNA sequences showed that uracil is the dominant base in the first position at the 5-end of the mature miRNAs, and the base may have an important functional role in miRNA biogenesis and/or miRNA-mediated gene regulation. Finally, we predicted potential targets of these miRNAs. These target genes were predicted to encode transcription factors, resistance protein, heat shock protein, protein kinase, transporter, zinc finger protein and others, which might play important roles in soybean development and stress response.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700