Application of hybrid numerical and analytical solutions for the simulation of coupled thermal, hydraulic, mechanical and chemical processes during fluid flow through a fractured rock
详细信息    查看全文
  • 作者:Christopher McDermott ; Alexander Bond ; Andrew Fraser Harris…
  • 关键词:Coupled processes ; Modelling ; Fracture ; Fluid flow ; Hybrid numerical method ; THMC
  • 刊名:Environmental Earth Sciences
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:74
  • 期:12
  • 页码:7837-7854
  • 全文大小:3,063 KB
  • 参考文献:Abelin H, Birgersson L, Widen H, Agren T, Moreno L, Neretnieks I (1994) Channeling experiments in crystalline fractured rocks. J Contam Hydrol 15(3):129-58CrossRef
    Barton N, de Quadros EF (1997) Joint aperture and roughness in the prediction of flow and groutability of rock masses. Int J Rock Mech Min Sci 34(3-):252
    Bernabé Y, Evans B, Fitzenz DD (2009) Stress transfer during pressure solution compression of rigidly coupled axisymmetric asperities pressed against a flat semi-infinite solid. Pure appl Geophys 166(5-):899-25CrossRef
    Bond AE, Chittenden N, Fedors R, Lang PS, McDermott CI, Neretniecks I, Pan PZ, Sembera J, Watanabe N, Yasuhara H (2014) Coupled THMC modelling of a single fracture in novaculite for DECOVALEX-2015, DFNE 2014. In: 1st international conference on discrete fracture network engineering October 19-2, Vancouver, Canada, 2014. http://?www.?carma-rocks.?ca/?titles-dfne-2014/-/span>
    Brown S, Caprihan A, Hardy R (1998) Experimental observation of fluid flow channels in a single fracture. J Geophys Res Solid Earth 103(B3):5125-132CrossRef
    Celia MA, Nordbotten JM (2009) Practical modeling approaches for geological storage of carbon dioxide. Groundwater 47(5):627-38CrossRef
    Charney JG, Fj?rtoft R, Neumann JV (1950) Numerical integration of the barotropic vorticity equation. Tellus 2(4):237-54CrossRef
    Choi JH, Seo YS, Chae BG (2013) A study of the pressure solution and deformation of quartz crystals at high pH and under high stress. Nucl Eng Technol 45(1):53-0CrossRef
    Courant R, Friedrichs K, Lewy H (1928) über die partiellen differenzengleichungen der mathematischen Physik. Math Ann 100(1):32-4CrossRef
    Elias BP, Hajash A Jr (1992) Changes in quartz solubility and porosity due to effective stress: an experimental investigation of pressure solution. Geology 20(5):451-54CrossRef
    Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3(2):107-15CrossRef
    Finkel M, Liedl R, Teutsch G (1998) Modelling reactive transport of organic solutes in groundwater with a Lagrangian streamtube approach. Geochemical processes. Concept Models React Transp Soil Groundwater 115-33
    Finkel M, Liedl R, Teutsch G (1999) Modelling surfactant-enhanced remediation of polycyclic aromatic hydrocarbons. Environ Model Softw 14:203-11CrossRef
    Glover PWJ, Matsuki K, Hikima R, Hayashi K (1999) Characterising rock fractures using synthetic fractal analogues. Geothermal Sci Technol (6):83-12
    Gratier JP, Guiguet R, Renard F, Jenatton L, Bernard D (2009) A pressure solution creep law for quartz from indentation experiments. J Geophys Res B Solid Earth 114(3):B03403. doi:10.-029/-008JB005652
    Helmholtz H (1853) Ueber einige Gesetze der Vertheilung elektrischer Str?me in k?rperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Ann Phys 165(6):211-33CrossRef
    Istok J (1989) Groundwater modeling by the finite element method, American geophysical union, 2000 Florida avenue, NW, Washington, DC 20009. Water Resources Monograph Series, vol. 13, p 415
    Kalbacher T, Mettier R, McDermott C, Wang W, Kosakowski G, Taniguchi T, Kolditz O (2007) Geometric modelling and object-oriented software concepts applied to a heterogeneous fractured network from the Grimsel rock laboratory. Comput Geosci 11(1):9-6CrossRef
    Kolditz O (1997) Str?mung Stoff—und W?rmetransport im Kluftgestein. Bortraeger Verlag, Berlin-Stuttgart
    Kolditz O, Bauer S, Bilke L, B?ttcher N, Delfs JO, Fischer T, G?rke UJ, Kalbacher T, Kosakowski G, McDermott CI, Park CH, Radu F, Rink K, Shao H, Shao HB, Sun F, Sun YY, Singh AK, Taron J, Walther M, Wang W, Watanabe N, Wu Y, Xie M, Xu W, Zehner B (2012) OpenGeoSys an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci 67(2):589-99CrossRef
    Koyama T, Fardin N, Jing L, Stephansson O (2006) Numerical simulation of shear-induced flow anisotropy and scale-dependent aperture and transmissivity evolution of rock fracture replicas. Int J Rock Mech Min Sci 43(1):89-06CrossRef
    Lewis RW, Schrefler BA (1998) The finite element method in the static and dynamic deformation and consolidation of porous media. Wiley, Chichester
    McDermott CI, Liedl R, Sauter M, Teutsch G (2005) The multi-shell model—a conceptual model approach. In: Dietrich P, Helmig R, Sauter M, H?tzl H, K?ngeter J, Teutsch G (eds) Flow and transport in fractured porous media. Springer, New York, pp 306-21
    McDermott CI, Lodemann M, Ghergut I, Tenzer H, Sauter M, Kolditz O (2006) Investigation of coupled hydraulic-geomechanical processes at the KTB site. Pressure-dependent characteristics of a long-term pump test and elastic interpretation using a geomechanical facies model. Geofluids 6(1):67-1CrossRef
    McDermott CI, Tarafder SA, Kolditz O, Schüth C (2007) Vacuum assisted removal of volatile to semi volatile organic contaminants from water using hollow fiber membr
  • 作者单位:Christopher McDermott (1)
    Alexander Bond (2)
    Andrew Fraser Harris (1)
    Neil Chittenden (2)
    Kate Thatcher (2)

    1. School of Geoscience, University of Edinburgh, Edinburgh, UK
    2. Quintessa Ltd, Warrington and Henley-on-Thames, UK
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:None Assigned
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-6299
文摘
In many subsurface engineering geoscience applications the impact of thermal, hydraulic, mechanical and chemical (THMC) processes needs to be evaluated. Coupled process models require solution of the partial differential equations describing energy or mass balance. Ignoring the coupling of these processes can lead to a significant oversimplification which may not adequately represent the systems being modelled. Incorporation of coupled processes and associated phenomena inevitably leads to numerical stability issues due to very different scales in terms of spatial distribution, time and parametrical heterogeneity. One approach to simplify the computational demands is to integrate analytical and physical models into standard numerical modelling techniques (in this case finite elements), effectively adding sub-grid scale and sub-time scale information to the model. We present such an approach for the simulation of fluid flow through a fracture validated against experimental data and cross comparison with results of other modelling teams within the DECOVALEX 2015 (development of coupled models and their validation against experiments) project (http://?www.?decovalex.?org). By replacing the mechanical behaviour and chemical transport processes with physical models, and by utilising the static nature of the temperature changes, only the hydraulic system required numerical solution in a highly coupled problem. Physical models for fracture closure due to pressure solution, fracture opening due to chemical dissolution, the development of channel flow and a change in the reactive transport characteristics with time were implemented and are described here. The main features of the experimental data could be replicated, although lying outside of the parameter range suggested by the literature. Comparison with other teams using different modelling approaches indicated internal consistency. Keywords Coupled processes Modelling Fracture Fluid flow Hybrid numerical method THMC

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700