Study on thermal degradation of cattlehide collagen fibers by simultaneous TG–MS–FTIR
详细信息    查看全文
  • 作者:Pengyuan Yang ; Xichan He ; Wenjuan Zhang…
  • 关键词:Thermal analysis ; Degradation ; Mechanism ; Cattlehide collagen fibers
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2017
  • 出版时间:March 2017
  • 年:2017
  • 卷:127
  • 期:3
  • 页码:2005-2012
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Physical Chemistry; Analytical Chemistry; Polymer Sciences; Inorganic Chemistry; Measurement Science and Instrumentation;
  • 出版者:Springer Netherlands
  • ISSN:1588-2926
  • 卷排序:127
文摘
Leather was useful materials since dawn of human history for excellent properties, but thermal degradation mechanism was not very clear yet. In this paper, much progress has been made in elucidating the thermal stability and thermal degradation mechanism by thermoanalytical study in argon. Thermogravimetric analysis simultaneously coupled with mass spectrometry and Fourier transform infrared spectrometry was employed to study the thermal degradation of cattlehide collagen fibers through in-depth analysis of the evolved gas. Thermogravimetry analyses carried out on sample, deprived from any residual catalyst and highlighted a two-step thermal degradation. New evidence demonstrates that the process during temperature range from 373 to 513 K was phase transformation. Photographs of polarizing microscope confirmed the conclusion. The decomposition of cattlehide collagen fibers starts at about 523 K. The cattlehide collagen fibers may undergo the process of melting, oxidation and decomposition. In decomposition, more than three steps take place. The mass spectra and Fourier transform infrared spectrometry stated clearly that double bond of carbon to oxygen, carbon to sulfur and carbon to nitrogen were destroyed firstly because the carbon dioxide, carbon monoxide and ammonia evolved simultaneously. The second peak of carbon monoxide in mass spectra indicated that some organic fragments were decomposed above 1073 K which confirmed that thermal degradation of leather is more than three steps.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700