Veno-venous extracorporeal CO2 removal for the treatment of severe respiratory acidosis: pathophysiological and technical considerations
详细信息    查看全文
  • 作者:Christian Karagiannidis (31)
    Kristin Aufm Kampe (31)
    Fernando Suarez Sipmann (32) (33)
    Anders Larsson (32)
    Goran Hedenstierna (32)
    Wolfram Windisch (31) (34)
    Thomas Mueller (35)

    31. Department of Pneumology and Critical Care Medicine
    ; Cologne-Merheim Hospital ; Kliniken der Stadt K枚ln gGmbH ; Witten/Herdecke University Hospital ; Ostmerheimer Strasse 200 ; Cologne ; D-51109 ; Germany
    32. Hedenstierna Laboratory
    ; Anesthesiology and Intensive Care ; Department of Surgical Sciences ; Uppsala University ; Uppsala ; Sweden
    33. CIBER de Enfermedades Respiratorias
    ; Instituto de Salud Carlos III ; Madrid ; Spain
    34. Department of Pneumology
    ; University Hospital Freiburg ; Killianstr.5 ; Freiburg ; D-79106 ; Germany
    35. Department of Internal Medicine II
    ; University Hospital of Regensburg ; Franz-Josef-Strauss-Allee 11 ; Regensburg ; 93053 ; Germany
  • 刊名:Critical Care
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:18
  • 期:3
  • 全文大小:824 KB
  • 参考文献:1. Lightowler, JV, Wedzicha, JA, Elliott, MW, Ram, FS (2003) Non-invasive positive pressure ventilation to treat respiratory failure resulting from exacerbations of chronic obstructive pulmonary disease: Cochrane systematic review and meta-analysis. BMJ 326: pp. 185 CrossRef
    2. Chandra, D, Stamm, JA, Taylor, B, Ramos, RM, Satterwhite, L, Krishnan, JA, Mannino, D, Sciurba, FC, Holguin, F (2012) Outcomes of noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease in the United States, 1998鈥?008. Am J Respir Crit Care Med 185: pp. 152-159 CrossRef
    3. Hoo, GW, Hakimian, N, Santiago, SM (2000) Hypercapnic respiratory failure in COPD patients: response to therapy. Chest 117: pp. 169-177 CrossRef
    4. Quinnell, TG, Pilsworth, S, Shneerson, JM, Smith, IE (2006) Prolonged invasive ventilation following acute ventilatory failure in COPD: weaning results, survival, and the role of noninvasive ventilation. Chest 129: pp. 133-139 CrossRef
    5. Ambrosino, N, Vagheggini, G (2008) Noninvasive positive pressure ventilation in the acute care setting: where are we?. Eur Respir J 31: pp. 874-886 143507" target="_blank" title="It opens in new window">CrossRef
    6. Conti, G, Antonelli, M, Navalesi, P, Rocco, M, Bufi, M, Spadetta, G, Meduri, GU (2002) Noninvasive vs. conventional mechanical ventilation in patients with chronic obstructive pulmonary disease after failure of medical treatment in the ward: a randomized trial. Intensive Care Med 28: pp. 1701-1707 1478-0" target="_blank" title="It opens in new window">CrossRef
    7. Gattinoni, L, Agostoni, A, Pesenti, A, Pelizzola, A, Rossi, GP, Langer, M, Vesconi, S, Uziel, L, Fox, U, Longoni, F, Kolobow, T, Damia, G (1980) Treatment of acute respiratory failure with low-frequency positive-pressure ventilation and extracorporeal removal of CO2. Lancet 2: pp. 292-294 140-6736(80)90237-8" target="_blank" title="It opens in new window">CrossRef
    8. Gattinoni, L, Kolobow, T, Tomlinson, T, Iapichino, G, Samaja, M, White, D, Pierce, J (1978) Low-frequency positive pressure ventilation with extracorporeal carbon dioxide removal (LFPPV-ECCO2R): an experimental study. Anesth Analg 57: pp. 470-477 CrossRef
    9. Terragni, PP, Del Sorbo, L, Mascia, L, Urbino, R, Martin, EL, Birocco, A, Faggiano, C, Quintel, M, Gattinoni, L, Ranieri, VM (2009) Tidal volume lower than 6聽ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology 111: pp. 826-835 CrossRef
    10. Bein, T, Weber-Carstens, S, Goldmann, A, Muller, T, Staudinger, T, Brederlau, J, Muellenbach, R, Dembinski, R, Graf, BM, Wewalka, M, Philipp, A, Wernecke, KD, Lubnow, M, Slutsky, AS (2013) Lower tidal volume strategy (approximately 3聽ml/kg) combined with extracorporeal CO2 removal versus 鈥榗onventional鈥?protective ventilation (6聽ml/kg) in severe ARDS: the prospective randomized Xtravent-study. Intensive Care Med 39: pp. 847-856 CrossRef
    11. Livigni, S, Maio, M, Ferretti, E, Longobardo, A, Potenza, R, Rivalta, L, Selvaggi, P, Vergano, M, Bertolini, G (2006) Efficacy and safety of a low-flow veno-venous carbon dioxide removal device: results of an experimental study in adult sheep. Crit Care 10: pp. R151 CrossRef
    12. Batchinsky, AI, Jordan, BS, Regn, D, Necsoiu, C, Federspiel, WJ, Morris, MJ, Cancio, LC (2011) Respiratory dialysis: reduction in dependence on mechanical ventilation by venovenous extracorporeal CO2 removal. Crit Care Med 39: pp. 1382-1387 CrossRef
    13. Kluge, S, Braune, SA, Engel, M, Nierhaus, A, Frings, D, Ebelt, H, Uhrig, A, Metschke, M, Wegscheider, K, Suttorp, N, Rousseau, S (2012) Avoiding invasive mechanical ventilation by extracorporeal carbon dioxide removal in patients failing noninvasive ventilation. Intensive Care Med 38: pp. 1632-1639 CrossRef
    14. Muller, T, Lubnow, M, Philipp, A, Bein, T, Jeron, A, Luchner, A, Rupprecht, L, Reng, M, Langgartner, J, Wrede, CE, Zimmermann, M, Birnbaum, D, Schmid, C, Riegger, GA, Pfeifer, M (2009) Extracorporeal pumpless interventional lung assist in clinical practice: determinants of efficacy. Eur Respir J 33: pp. 551-558 CrossRef
    15. Moerer, O, Quintel, M (2011) Protective and ultra-protective ventilation: using pumpless interventional lung assist (iLA). Minerva Anestesiol 77: pp. 537-544
    16. Bein, T, Weber, F, Philipp, A, Prasser, C, Pfeifer, M, Schmid, FX, Butz, B, Birnbaum, D, Taeger, K, Schlitt, HJ (2006) A new pumpless extracorporeal interventional lung assist in critical hypoxemia/hypercapnia. Crit Care Med 34: pp. 1372-1377 CrossRef
    17. Burki, NK, Mani, RK, Herth, FJ, Schmidt, W, Teschler, H, Bonin, F, Becker, H, Randerath, WJ, Stieglitz, S, Hagmeyer, L, Priegnitz, C, Pfeifer, M, Blaas, SH, Putensen, C, Theuerkauf, N, Quintel, M, Moerer, O (2013) A novel extracorporeal CO(2) removal system: results of a pilot study of hypercapnic respiratory failure in patients with COPD. Chest 143: pp. 678-686
    18. Abrams, DC, Brenner, K, Burkart, KM, Agerstrand, CL, Thomashow, BM, Bacchetta, M, Brodie, D (2013) Pilot study of extracorporeal carbon dioxide removal to facilitate extubation and ambulation in exacerbations of chronic obstructive pulmonary disease. Ann Am Thorac Soc 10: pp. 307-314 CrossRef
    19. van Milgen, J, Noblet, J, Dubois, S, Bernier, JF (1997) Dynamic aspects of oxygen consumption and carbon dioxide production in swine. Br J Nutr 78: pp. 397-410 CrossRef
    20. Wearden, PD, Federspiel, WJ, Morley, SW, Rosenberg, M, Bieniek, PD, Lund, LW, Ochs, BD (2012) Respiratory dialysis with an active-mixing extracorporeal carbon dioxide removal system in a chronic sheep study. Intensive Care Med 38: pp. 1705-1711 CrossRef
    21. Gattinoni, L, Pesenti, A, Mascheroni, D, Marcolin, R, Fumagalli, R, Rossi, F, Iapichino, G, Romagnoli, G, Uziel, L, Agostoni, A, Kolobow, T, Giorgio, D (1986) Low-frequency positive-pressure ventilation with extracorporeal CO2 removal in severe acute respiratory failure. JAMA 256: pp. 881-886 CrossRef
    22. Karagiannidis, C, Lubnow, M, Philipp, A, Riegger, GA, Schmid, C, Pfeifer, M, Mueller, T (2010) Autoregulation of ventilation with neurally adjusted ventilatory assist on extracorporeal lung support. Intensive Care Med 36: pp. 2038-2044 CrossRef
    23. Cardenas, VJ, Miller, L, Lynch, JE, Anderson, MJ, Zwischenberger, JB (2006) Percutaneous venovenous CO2 removal with regional anticoagulation in an ovine model. ASAIO J 52: pp. 467-470 CrossRef
    24. Schmidt, M, Tachon, G, Devilliers, C, Muller, G, Hekimian, G, Brechot, N, Merceron, S, Luyt, CE, Trouillet, JL, Chastre, J, Leprince, P, Combes, A (2013) Blood oxygenation and decarboxylation determinants during venovenous ECMO for respiratory failure in adults. Intensive Care Med 39: pp. 838-846 CrossRef
    25. Korver, EP, Ganushchak, YM, Simons, AP, Donker, DW, Maessen, JG, Weerwind, PW (2012) Quantification of recirculation as an adjuvant to transthoracic echocardiography for optimization of dual-lumen extracorporeal life support. Intensive Care Med 38: pp. 906-909 CrossRef
    26. Kolobow, T, Gattinoni, L, Tomlinson, TA, Pierce, JE (1977) Control of breathing using an extracorporeal membrane lung. Anesthesiology 46: pp. 138-141 CrossRef
    27. Gattinoni, L, Kolobow, T, Tomlinson, T, White, D, Pierce, J (1978) Control of intermittent positive pressure breathing (IPPB) by extracorporeal removal of carbon dioxide. Br J Anaesth 50: pp. 753-758 CrossRef
    28. Park, M, Costa, EL, Maciel, AT, Silva, DP, Friedrich, N, Barbosa, EV, Hirota, AS, Schettino, G, Azevedo, LC (2013) Determinants of oxygen and carbon dioxide transfer during extracorporeal membrane oxygenation in an experimental model of multiple organ dysfunction syndrome. PLoS One 8: pp. e54954 CrossRef
    29. Taskar, V, John, J, Larsson, A, Wetterberg, T, Jonson, B (1995) Dynamics of carbon dioxide elimination following ventilator resetting. Chest 108: pp. 196-202 CrossRef
  • 刊物主题:Intensive / Critical Care Medicine; Emergency Medicine;
  • 出版者:BioMed Central
  • ISSN:1364-8535
文摘
Introduction While non-invasive ventilation aimed at avoiding intubation has become the modality of choice to treat mild to moderate acute respiratory acidosis, many severely acidotic patients (pH 2 removal (ECCO2R) could prove to be an alternative. The present animal study tested in a systematic fashion technical requirements for successful ECCO2R in terms of cannula size, blood and sweep gas flow. Methods ECCO2R with a 0.98聽m2 surface oxygenator was performed in six acidotic (pH Results Amelioration of severe respiratory acidosis was only feasible when blood flow rates of 750 to 1000聽mL/minute (19Fr catheter) were used. Maximal CO2-elimination was 146.1鈥壜扁€?2.6聽mL/minute, while pH increased from 7.13鈥壜扁€?.08 to 7.41鈥壜扁€?.07 (blood flow of 1000聽mL/minute; sweep gas flow 16聽L/minute). Accordingly, a sweep gas flow of 8聽L/minute resulted in a maximal CO2-elimination rate of 138.0鈥壜扁€?6.9聽mL/minute. The 14.5Fr catheter allowed a maximum CO2 elimination rate of 77.9聽mL/minute, which did not result in the normalization of pH. Conclusions Veno-venous ECCO2R may serve as a treatment option for severe respiratory acidosis. In this porcine model, ECCO2R was most effective when using blood flow rates ranging between 750 and 1000聽mL/minute, while an increase in sweep gas flow from 8 to 16聽L/minute had less impact on ECCO2R in this setting.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700