Kinetics and mechanisms of converting bioactive borate glasses to hydroxyapatite in aqueous phosphate solution
详细信息    查看全文
文摘
Borate bioactive glasses are receiving increasing attention as scaffold materials for bone repair and regeneration. In this study, the kinetics and mechanisms of converting three groups of sodium–calcium–borate glasses with varying CaO:B2O3 ratio to hydroxyapatite (HA) in 0.25 M K2HPO4 solution were investigated at 10–70 ¡ãC. Glass disks with the composition 2Na2O¡¤(2 − x)CaO¡¤(6 + x)B2O3 (x = 0, 0.5, and 1.0) were immersed for up to 8 days in the potassium phosphate solution. The conversion kinetics to HA were monitored by measuring the weight loss of the glass, while X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy were used to study structural and compositional changes. All three groups of glasses formed HA on their surfaces, showing that the glasses were bioactive. At 10–37 ¡ãC, the conversion kinetics was well fitted by the contracting sphere model. Also, the contracting sphere model has a good fit for the early stage of conversion at 70 ¡ãC, whereas a three-dimensional (3D) diffusion model provided a good fit to the data of the later stage. The results of this study provide kinetic and structural data for the design of borate bioactive glasses for potential applications in bone tissue engineering.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700