Positive selection drives the evolution of a major histocompatibility complex gene in an endangered Mexican salamander species complex
详细信息    查看全文
  • 作者:Karen E. Tracy ; Karen M. Kiemnec-Tyburczy ; J. Andrew DeWoody
  • 关键词:Ambystoma ; Balancing selection ; Disease ; Immunogenetics ; MHC
  • 刊名:Immunogenetics
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:67
  • 期:5-6
  • 页码:323-335
  • 全文大小:703 KB
  • 参考文献:Anisimova M, Nielsen R, Yang Z (2003) Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164:1229-236PubMed Central PubMed
    Babik W, Pabijan M, Radwan J (2008) Contrasting patterns of variation in MHC loci in the Alpine newt. Mol Ecol 17:2339-355. doi:10.-111/?j.-365-294X.-008.-3757.?x View Article PubMed
    Babik W, Pabijan M, Arntzen JW et al (2009) Long-term survival of a urodele amphibian despite depleted major histocompatibility complex variation. Mol Ecol 18:769-81. doi:10.-111/?j.-365-294X.-008.-4057.?x View Article PubMed
    Baratti M, Dessi-Fulgheri F, Ambrosini R et al (2012) MHC genotype predicts mate choice in the ring-necked pheasant Phasianus colchicus. J Evol Biol 25:1531-542. doi:10.-111/?j.-420-9101.-012.-2534.?x View Article PubMed
    Barribeau SM, Villinger J, Waldman B (2008) Major histocompatibility complex based resistance to a common bacterial pathogen of amphibians. PLoS One 3:e2692. doi:10.-371/?journal.?pone.-002692 View Article PubMed Central PubMed
    Borghans JAM, Beltman JB, De Boer RJ (2004) MHC polymorphism under host-pathogen coevolution. Immunogenetics 55:732-39. doi:10.-007/?s00251-003-0630-5 View Article PubMed
    Bos D, DeWoody J (2005) Molecular characterization of major histocompatibility complex class II alleles in wild tiger salamanders (Ambystoma tigrinum). Immunogenetics 57:775-81. doi:10.-007/?s00251-005-0038-5 View Article PubMed
    Bos DH, Williams RN, Gopurenko D et al (2009) Condition-dependent mate choice and a reproductive disadvantage for MHC-divergent male tiger salamanders. Mol Ecol 18:3307-315. doi:10.-111/?j.-365-294X.-009.-4242.?x View Article PubMed
    Brown J, Jardetzky T, Gorga J et al (1993) 3-Dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33-9. doi:10.-038/-64033a0 View Article PubMed
    Bulut Z, McCormick C, Bos D, DeWoody J (2008) Polymorphism of alternative splicing of major histocompatibility complex transcripts in wild tiger salamanders. J Mol Evol 67:68-5. doi:10.-007/?s00239-008-9125-1 View Article PubMed
    Chen G, Robert J (2011) Antiviral immunity in amphibians. Viruses 3:2065-086. doi:10.-390/?v3112065 View Article PubMed Central PubMed
    Cheng Y, Sanderson C, Jones M, Belov K (2012) Low MHC class II diversity in the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 64:525-33. doi:10.-007/?s00251-012-0614-4 View Article PubMed
    Cohen N (1971) Amphibian transplantation reactions: a review. Am Zool 11:193-05. doi:10.-093/?icb/-1.-.-93
    Daszak P, Cunningham AA, Hyatt AD (2003) Infectious disease and amphibian population declines. Divers Distrib 9:141-50. doi:10.-046/?j.-472-4642.-003.-0016.?x View Article
    Delport W, Poon AFY, Frost SDW, Pond SLK (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26:2455-457. doi:10.-093/?bioinformatics/?btq429 View Article PubMed Central PubMed
    Devlin B, Risch N (1995) A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 29:311-22View Article PubMed
    Doytchinova IA, Flower DR (2005) In silico identification of supertypes for class II MHCs. J Immunol 174:7085-095View Article PubMed
    Ellison A, Allainguillaume J, Girdwood S et al (2012) Maintaining functional major histocompatibility complex diversity under inbreeding: the case of a selfing vertebrate. Proc R Soc B-Biol Sci 279:5004-013. doi:10.-098/?rspb.-012.-929 View Article
    Fisher MC, Garner TWJ, Walker SF (2009) Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol 63:291-10. doi:10.-146/?annurev.?micro.-91208.-73435 View Article PubMed
    Frank SA (2002) Genetic variability of hosts. http://?www.?ncbi.?nlm.?nih.?gov/?books/?NBK2401/-/span> . Accessed 3 May 2014
    Frost, DR (2014) Amphibian species of the world: an online reference. Version 6.0. American
    Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485-86
    Gray M, Miller D, Hoverman J (2009) Ecology and pathology of amphibian ranaviruses. Dis Aquat Organ 87:243-66. doi:10.-354/?dao02138 View Article PubMed
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95-8
    Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:Unpaginated
    Hedrick PW, Poulin R (2002) Pathogen resistance and genetic variation at MHC loci. Evolution 56:1902-908. doi:10.-554/-014-3820(2002)056[1902:?PRAGVA]2.-.?CO;2 View Article PubMed
    Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226-31. doi:10.-007/?BF01245622 View Article PubMed
    Holsinger KE, Weir BS (20
  • 作者单位:Karen E. Tracy (1)
    Karen M. Kiemnec-Tyburczy (1)
    J. Andrew DeWoody (2)
    Gabriela Parra-Olea (3)
    Kelly R. Zamudio (1)

    1. Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
    2. Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
    3. Departamento de Zoología, Instituto de Biología, Universidad Nacional Autonoma de México Ciudad Universitaria, Ciudad de México, Mexico
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Immunology
    Allergology
    Cell Biology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1211
文摘
Immune gene evolution can be critical to species survival in the face of infectious disease. In particular, polymorphism in the genes of the major histocompatibility complex (MHC) helps vertebrates combat novel and diverse pathogens by increasing the number of pathogen-derived proteins that can initiate the host’s acquired immune response. In this study, we used a combination of presumably adaptive and neutral markers to investigate MHC evolution in populations of five salamander species within the Ambystoma velasci complex, a group consisting of 15 recently diverged species, several of which are endangered. We isolated 31 unique MHC class II β alleles from 75 total individuals from five species in this complex. MHC heterozygosity was significantly lower than expected for all five species, and we found no clear relationship between number of MHC alleles and species range, life history, or level of heterozygosity. We inferred a phylogeny representing the evolutionary history of Ambystoma MHC, with which we found signatures of positive selection on the overall gene, putative peptide-binding residues, and allelic lineages. We identified several instances of trans-species polymorphism, a hallmark of balancing selection observed in other groups of closely related species. In contrast, we did not detect comparable allelic diversity or signatures of selection on neutral loci. Additionally, we identified 17 supertypes among the 44 unique Ambystoma alleles, indicating that these sequences may encode functionally distinct MHC variants. We therefore have strong evidence that positive selection is a major evolutionary force driving patterns of MHC polymorphism in this recently radiated species complex.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700