Systematic Parameterization, Storage, and Representation of Volumetric DICOM Data
详细信息    查看全文
  • 作者:Felix Fischer ; M. Alper Selver ; Sinem Gezer…
  • 关键词:DICOM ; Grayscale Softcopy Presentation State (GSPS) ; Compression ; Visualization
  • 刊名:Journal of Medical and Biological Engineering
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:35
  • 期:6
  • 页码:709-723
  • 全文大小:2,570 KB
  • 参考文献:1.National Electrical Manufacturers Association (NEMA). Digital imaging and communications in medicine (DICOM), Version: 2015, Virginia. http://鈥媘edical.鈥媙ema.鈥媜rg/鈥媠tandard.鈥媓tml .
    2.NEMA. Digital Imaging and Communications in Medicine (DICOM)鈥擲upplement 33: Grayscale Softcopy Presentation State (GSPS) Storage, Version: 1999. ftp://鈥媘edical.鈥媙ema.鈥媜rg/鈥媘edical/鈥媎icom/鈥媐inal/鈥媠up33_鈥媐t.鈥媝df .
    3.Srinivasan, K., Mohammadi, M., & Shepherd, J. (2014). Cone beam computed tomography for adaptive radiotherapy treatment planning. Journal of Medical and Biological Engineering, 34, 377鈥?85.CrossRef
    4.Kao, T., Lien, C., Hsiao, C., & Keng, C. (2010). Review: A software-embedded method of security protection applied in indirect imaging in dentistry. Journal of Medical and Biological Engineering, 30, 203鈥?07.CrossRef
    5.Cronsk盲r, M., R盲nnar, L. E., & B盲ckstr枚m, M. (2012). Review: Implementation of digital design and solid free-form fabrication for customization of implants in trauma orthopedics. Journal of Medical and Biological Engineering, 32, 91鈥?6.CrossRef
    6.Bitter, I., Uitert, R. V., Wolf, I., Ibanez, L., & Kuhnigk, J. M. (2007). Comparison of four freely available frameworks for image processing and visualization that use ITK. IEEE Transactions on Visualization and Computer Graphics, 13, 483鈥?93.CrossRef
    7.Caban, J. J., Joshi, A., & Nagy, P. (2007). Rapid development of medical imaging tools with open-source libraries. Journal of Digital Imaging, 20, 83鈥?3.CrossRef
    8.Sennst, D. A. (2001). 3D-Visualisierung anatomischer modelle und Integration der zugrunde liegenden r盲umlichen bildfolgen. Diplomarbeit. Heilbronn: Universit盲t Heidelberg Fachhochschule Heilbronn.
    9.National Electrical Manufacturers Association. DICOM鈥擲upplement 156: Planar MPR Volumetric Presentation State, Version: November, 21, 2014. ftp://鈥媘edical.鈥媙ema.鈥媜rg/鈥媘edical/鈥媎icom/鈥媠upps/鈥婰B/鈥媠up156_鈥媗b.鈥媝df .
    10.National Electrical Manufacturers Association. DICOM鈥擲upplement 111: Segmentation Storage SOP Class, Version: August, 22, 2006. ftp://鈥媘edical.鈥媙ema.鈥媜rg/鈥媘edical/鈥媎icom/鈥媐inal/鈥媠up111_鈥媐t.鈥媝df .
    11.NEMA. DICOM鈥擲upplement 132: The Surface Segmentation Storage SOP Class: September, 17, 2008. ftp://鈥媘edical.鈥媙ema.鈥媜rg/鈥媘edical/鈥媎icom/鈥媐inal/鈥媠up132_鈥媐t.鈥媝df .
    12.Fischer, F., Selver, M. A., Hillen, W., & G眉zeli艧, C. (2010). Integrating segmentation methods from different tools into a visualization program using an object based plug-in interface. IEEE Transactions on Information Technology in Biomedicine, 14, 923鈥?34.CrossRef
    13.Hsu, W., & Chen, K. (2014). Segmentation-based compression using modified competitive network. Journal of Medical and Biological Engineering, 34, 542鈥?46.CrossRef
    14.Sethian, J. (2002). Level set methods and fast marching methods. Cambridge: Cambridge University Press.
    15.Adalsteinsson, D., & Sethian, J. A. (1995). A fast level set method for propagating interfaces. Journal of Computational Physics, 118, 269鈥?77.MathSciNet CrossRef MATH
    16.Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 629鈥?39.CrossRef
    17.Schroeder, W., Martin, K., & Lorensen, B. (2007). The visualization toolkit (4th ed.). Clifton Park, NY: Kitware Inc.
    18.Martin, K., Ibanez, L., Avila, L., Barre, S., & Kaspersen, J. H. (2005). Integrating segmentation methods from insight toolkit into visualization application. Medical Image Analysis, 9, 579鈥?93.CrossRef
    19.Lai, J. Y., Lee, P. Y., Yu, S. A., Huang, C. Y., Hu, Y. S., & Feng, C. L. (2014). Computer-assisted fracture reduction and fixation simulation for pelvic fractures. Journal of Medical and Biological Engineering, 34, 368鈥?76.CrossRef
    20.Enjiela, E., & Hussein, E. (2014). Reconstruction of region-of-interest image in narrow-field-of-view computed tomography without prior constraints. Journal of Medical and Biological Engineering, 34, 431鈥?38.CrossRef
    21.Arslan, Y. Z., Cansiz, E., Turan, F., & Atalay, B. (2014). Computer-assisted design of patient-specific sagittal split osteotomy guide and soft tissue retractor. Journal of Medical and Biological Engineering, 34, 363鈥?67.CrossRef
    22.Selver, M. A., Fischer, F., Gezer, S., Hillen, W., & Dicle, O. (2014). Semi-automatic segmentation methods for 3-d visualization and analysis of the liver. In Proceedings of European medical informatics conference (Vol. 205, pp. 1133鈥?137).
    23.Fischer, F., Selver, M. A., Dicle, O., & Hillen, W. (2014). Performance comparison of compression algorithms for archiving segmented volumetric binary medical data. In Proceedings of European medical informatics conference (Vol. 205, pp. 1138-1142).
    24.Salomon, D. (1998). Data compression: The complete reference. New York: Springer.CrossRef
    25.Birle, T. T. (2010). Bijective Run Length Encoding (RLE) compressor. http://鈥媘andala.鈥媍o.鈥媢k/鈥媌irle/鈥?/span> .
    26.ITU-T. Facsimile coding schemes and coding control functions for group 4 facsimile apparatus. ITU-T recommendation T.6. www.鈥媔tu.鈥媔nt/鈥媟ec/鈥婽-REC-T.鈥?-198811-I/鈥媏n .
    27.JBIG COMMITTEE. Information technology鈥攃oded representation of picture and audio information鈥攍ossy/lossless coding of bi-level images (14492 FCD). Version: 1999. http://鈥媤ww.鈥媕peg.鈥媜rg/鈥媝ublic/鈥媐cd14492.鈥媝df .
    28.Joint Bi-level Image Experts Group. Welcome to JBIG. http://鈥媤ww.鈥媕peg.鈥媜rg/鈥媕big/鈥媔ndex.鈥媓tml .
    29.Langley, A. (2009). JBIG2 Encoder 0.27. http://鈥媤ww.鈥媔mperialviolet.鈥媜rg/鈥媕big2.鈥媓tml .
    30.Giles, R., & Levien, R. jbig2dec0.9. http://鈥媠ourceforge.鈥媙et/鈥媝rojects/鈥媕big2dec .
    31.Taubman, D., & Marcellin, M. (2002). JPEG2000 image compression fundamentals, standards and practice. Boston: Kluwer.CrossRef
    32.Gargantini, I. (1982). Linear octtrees for fast processing of three-dimensional objects. Proceedings of Computer Graphics and Image Processing, 20, 365鈥?74.CrossRef
    33.Selver, M. A., Fischer, F., Kuntalp, M., & Hillen, W. (2007). A software tool for interactive generation, representation, and systematical storage of transfer functions for 3D medical images. Computer Methods and Programs in Biomedicine, 86, 270鈥?80.CrossRef
    34.Clunie, D. Medical imaging FAQ. www.鈥媎clunie.鈥媍om/鈥媘edical-image-faq .
    35.Hewett, A. J., Grevemeyer, H., Barth, A., Eichelberg, M., & Jensch, P. (1997). Techniques and experiences in validating DICOM images. In Proceedings of EuroPACS (pp. 195鈥?98).
  • 作者单位:Felix Fischer (1) (2)
    M. Alper Selver (3)
    Sinem Gezer (4)
    O臒uz Dicle (4)
    Walter Hillen (1)

    1. FH-Aachen, Juelich Division, Medical Informatics Laboratory, Aachen, Germany
    2. Nautavis GmbH, Linnich, Germany
    3. Electrical & Electronics Engineering Department, Dokuz Eylul University, 35160, Izmir, Turkey
    4. School of Medicine, Radiology Department, Dokuz Eylul University, Izmir, Turkey
  • 刊物类别:Biomedical Engineering; Cell Biology; Imaging / Radiology;
  • 刊物主题:Biomedical Engineering; Cell Biology; Imaging / Radiology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2199-4757
文摘
Tomographic medical imaging systems produce hundreds to thousands of slices, enabling three-dimensional (3D) analysis. Radiologists process these images through various tools and techniques in order to generate 3D renderings for various applications, such as surgical planning, medical education, and volumetric measurements. To save and store these visualizations, current systems use snapshots or video exporting, which prevents further optimizations and requires the storage of significant additional data. The Grayscale Softcopy Presentation State extension of the Digital Imaging and Communications in Medicine (DICOM) standard resolves this issue for two-dimensional (2D) data by introducing an extensive set of parameters, namely 2D Presentation States (2DPR), that describe how an image should be displayed. 2DPR allows storing these parameters instead of storing parameter applied images, which cause unnecessary duplication of the image data. Since there is currently no corresponding extension for 3D data, in this study, a DICOM-compliant object called 3D presentation states (3DPR) is proposed for the parameterization and storage of 3D medical volumes. To accomplish this, the 3D medical visualization process is divided into four tasks, namely pre-processing, segmentation, post-processing, and rendering. The important parameters of each task are determined. Special focus is given to the compression of segmented data, parameterization of the rendering process, and DICOM-compliant implementation of the 3DPR object. The use of 3DPR was tested in a radiology department on three clinical cases, which require multiple segmentations and visualizations during the workflow of radiologists. The results show that 3DPR can effectively simplify the workload of physicians by directly regenerating 3D renderings without repeating intermediate tasks, increase efficiency by preserving all user interactions, and provide efficient storage as well as transfer of visualized data. Keywords DICOM Grayscale Softcopy Presentation State (GSPS) Compression Visualization

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700