Detecting disease genes of non-small lung cancer based on consistently differential interactions
详细信息    查看全文
  • 作者:Qianqian Shi ; Xiaoping Liu ; Tao Zeng ; William Wang…
  • 关键词:Heterogeneous dataset ; Disease gene ; Lung cancer metastasis ; Differential interaction ; Edge biomarker ; Network biomarker
  • 刊名:Cancer and Metastasis Reviews
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:34
  • 期:2
  • 页码:195-208
  • 全文大小:1,736 KB
  • 参考文献:1.Bandyopadhyay, S., Mehta, M., Kuo, D., Sung, M. K., Chuang, R., Jaehnig, E. J., et al. (2010). Rewiring of genetic networks in response to DNA damage. Science, 330(6009), 1385鈥?389. doi:10.鈥?126/鈥媠cience.鈥?195618 .PubMed Central PubMed View Article
    2.Liu, X. P., Liu, Z. P., Zhao, X. M., & Chen, L. N. (2012). Identifying disease genes and module biomarkers by differential interactions. Journal of the American Medical Informatics Association, 19(2), 241鈥?48. doi:10.鈥?136/鈥媋miajnl-2011-000658 .PubMed Central PubMed View Article
    3.Chuang, H.Y., Lee, E., Liu, Y.T., Lee, D., & Ideker, T. (2007). Network-based classification of breast cancer metastasis. Molecular Systems Biology, 3, doi: Artn 140. doi:10.鈥?038/鈥婱sb4100180 .
    4.Metzker, M. L. (2010). Sequencing technologies鈥攖he next generation. Nature Reviews Genetics, 11(1), 31鈥?6. doi:10.鈥?038/鈥婲rg2626 .
    5.Schena, M., Shalon, D., Davis, R. W., & Brown, P. O. (1995). Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray. Science, 270(5235), 467鈥?70. doi:10.鈥?126/鈥媠cience.鈥?70.鈥?235.鈥?67 .PubMed View Article
    6.Chen, L.N., Liu, R., Liu, Z.P., Li, M.Y., & Aihara, K. (2012). Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Scientific Reports, 2, Artn 342. doi:10.鈥?038/鈥婼rep00342 .
    7.Yu, X. T., Li, G. J., & Chen, L. N. (2014). Prediction and early diagnosis of complex diseases by edge-network. Bioinformatics, 30(6), 852鈥?59. doi:10.鈥?093/鈥媌ioinformatics/鈥媌tt620 .PubMed View Article
    8.Zhang, W., Zeng, T., & Chen, L. (2014). EdgeMarker: identifying differentially correlated molecule pairs as edge-biomarkers. Journal of Theoretical Biology, 362, 35鈥?3. doi:10.鈥?016/鈥媕.鈥媕tbi.鈥?014.鈥?5.鈥?41 .PubMed View Article
    9.Edgar, R., Domrachev, M., & Lash, A. E. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30(1), 207鈥?10. doi:10.鈥?093/鈥婲ar/鈥?0.鈥?.鈥?07 .PubMed Central PubMed View Article
    10.Guo, Y., Graber, A., McBurney, R.N., & Balasubramanian, R. (2010). Sample size and statistical power considerations in high-dimensionality data settings: a comparative study of classification algorithms. Bmc Bioinformatics, 11, Artn 447. doi:10.鈥?186/鈥?471-2105-11-447 .
    11.Ma, C., Blackwell, T., Boehnke, M., Scott, L. J., & Investigators, G. D. (2013). Recommended joint and meta-analysis strategies for case鈥揷ontrol association testing of single low-count variants. Genetic Epidemiology, 37(6), 539鈥?50. doi:10.鈥?002/鈥婫epi.鈥?1742 .PubMed Central PubMed View Article
    12.Molina, J. R., Yang, P. G., Cassivi, S. D., Schild, S. E., & Adjei, A. A. (2008). Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clinic Proceedings, 83(5), 584鈥?94.PubMed Central PubMed View Article
    13.D鈥橝ddario, G., Fruh, M., Reck, M., Baumann, P., Klepetko, W., Felip, E., et al. (2010). Metastatic non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology, 21, v116鈥搗119. doi:10.鈥?093/鈥媋nnonc/鈥媘dq189 .PubMed View Article
    14.Niklinski, J., Niklinska, W., Laudanski, J., Chyczewska, E., & Chyczewski, L. (2001). Prognostic molecular markers in non-small cell lung cancer. Lung Cancer, 34, S53鈥揝58. doi:10.鈥?016/鈥婼0169-5002(01)00345-2 .PubMed View Article
    15.Coate, L. E., John, T., Tsao, M. S., & Shepherd, F. A. (2009). Molecular predictive and prognostic markers in non-small-cell lung cancer. Lancet Oncology, 10(10), 1001鈥?010.PubMed View Article
    16.Li, X.L., Shi, Y.R., Yin, Z.H., Xue, X.X., & Zhou, B.S. (2014). An eight-miRNA signature as a potential biomarker for predicting survival in lung adenocarcinoma. Journal of Translational Medicine, 12, Artn 159. doi:10.鈥?186/鈥?479-5876-12-159 .
    17.Cordell, H. J. (2009). Detecting gene-gene interactions that underlie human diseases. Nature Reviews Genetics, 10(6), 392鈥?04. doi:10.鈥?038/鈥婲rg2579 .PubMed Central PubMed View Article
    18.Dutkowski, J., & Ideker, T. (2011). Protein networks as logic functions in development and cancer. Plos Computational Biology, 7(9), ARTN e1002180. doi:10.鈥?371/鈥媕ournal.鈥媝cbi.鈥?002180 .
    19.Colotta, F., Allavena, P., Sica, A., Garlanda, C., & Mantovani, A. (2009). Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis, 30(7), 1073鈥?081. doi:10.鈥?093/鈥媍arcin/鈥媌gp127 .PubMed View Article
    20.Cavallo, F., De Giovanni, C., Nanni, P., Forni, G., & Lollini, P. L. (2011). 2011: the immune hallmarks of cancer. Cancer Immunology, Immunotherapy, 60(3), 319鈥?26. doi:10.鈥?007/鈥媠00262-010-0968-0 .PubMed Central PubMed View Article
    21.Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646鈥?74. doi:10.鈥?016/鈥媕.鈥媍ell.鈥?011.鈥?2.鈥?13 .PubMed View Article
    22.Yarden, R. I., & Brody, L. C. (1999). BRCA1 interacts with components of the histone deacetylase complex. Proceedings of the National Academy of Sciences of the United States of America, 96(9), 4983鈥?988. doi:10.鈥?073/鈥媝nas.鈥?6.鈥?.鈥?983 .PubMed Central PubMed View Article
    23.Gatei, M., Scott, S. P., Filippovitch, I., Soronika, N., Lavin, M. F., Weber, B., et al. (2000). Role for ATM in DNA damage-induced phosphorylation of BRCA1. Cancer Research, 60(12), 3299.PubMed
    24.Ouchi, T., Lee, S. W., Ouchi, M., Aaronson, S. A., & Horvath, C. M. (2000). Collaboration of signal transducer and activator of transcription 1 (STAT1) and BRCA1 in differential regulation of IFN-gamma target genes. Proceedings of the National Academy of Sciences of the United States of America, 97(10), 5208鈥?213. doi:10.鈥?073/鈥媝nas.鈥?80469697 .PubMed Central PubMed View Article
    25.Cousineau, I., Abaji, C., & Belmaaza, A. (2005). BRCA1 regulates RAD51 function in response to DNA damage and suppresses spontaneous sister chromatid replication slippage: implications for sister chromatid cohesion, genome stability, and carcinogenesis. Cancer Research, 65(24), 11384鈥?1391. doi:10.鈥?158/鈥?008-5472.鈥婥an-05-2156 .PubMed View Article
    26.Chang, S.H., Wang, R.H., Akagi, K., Kim, K.A., Martin, B.K., Cavallone, L., et al. (2011). Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155. Nature Medicine, 17(10), 1275-U1308. doi:10.鈥?038/鈥婲m.鈥?459 .
    27.Rosell, R., Skrzypski, M., Jassem, E., Taron, M., Bartolucci, R., Sanchez, J.J., et al. (2007). BRCA1: a novel prognostic factor in resected non-small-cell lung cancer. Plos One, 2(11), Artn E1129.doi:10.鈥?371/鈥婮ournal.鈥婸one.鈥?001129 .
    28.Schaller-Schonitz, M., Barzan, D., Williamson, A.J.K., Griffiths, J.R., Dallmann, I., Battmer, K., et al. (2014). BCR-ABL affects STAT5A and STAT5B differentially. Plos One, 9(5), ARTN e97243. doi:10.鈥?371/鈥媕ournal.鈥媝one.鈥?097243 .
    29.Clauson, C., Scharer, O.D., & Niedernhofer, L. (2013). Advances in understanding the complex mechanisms of DNA interstrand cross-link repair. Cold Spring Harbor Perspectives in Biology, 5(10), ARTN a012732. doi:10.鈥?101/鈥媍shperspect.鈥媋012732 .
    30.Rebhan, M., Chalifa-Caspi, V., Prilusky, J., & Lancet, D. (1998). GeneCards: a novel functional genomics compendium with automated data mining and query reformulation support. Bioinformatics, 14(8), 656鈥?64. doi:10.鈥?093/鈥媌ioinformatics/鈥?4.鈥?.鈥?56 .PubMed View Article
    31.Rekhtman, N., Ang, D. C., Sima, C. S., Travis, W. D., & Moreira, A. L. (2011). Immunohistochemical algorithm for differentiation of lung adenocarcinoma and squamous cell carcinoma based on large series of whole-tissue sections with validation in small specimens. Modern Pathology, 24(10), 1348鈥?359. doi:10.鈥?038/鈥媘odpathol.鈥?011.鈥?2 .PubMed View Article
    32.Chen, Z., Fillmore, C. M., Hammerman, P. S., Kim, C. F., & Wong, K. K. (2014). Non-small-cell lung cancers: a heterogeneous set of diseases. Nature Reviews Cancer, 14(8), 535鈥?46. doi:10.鈥?038/鈥婲rc3775 .PubMed View Article
    33.Wu, Y. Q., Borde, M., Heissmeyer, V., Feuerer, M., Lapan, A. D., Stroud, J. C., et al. (2006). FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell, 126(2), 375鈥?87. doi:10.鈥?016/鈥媕.鈥媍ell.鈥?006.鈥?5.鈥?42 .PubMed View Article
    34.Nam, H. J., & van Deursen, J. M. (2014). Cyclin B2 and p53 control proper timing of centrosome separation. Nature Cell Biology, 16(10), 1027鈥?027 (vol 16, pg 535, 2014).View Article
    35.Ladd, J. J., Busald, T., Johnson, M. M., Zhang, Q., Pitteri, S. J., Wang, H., et al. (2012). Increased plasma levels of the APC-interacting protein MAPRE1, LRG1, and IGFBP2 preceding a diagnosis of colorectal cancer in women. Cancer Prevention Research, 5(4), 655鈥?64. doi:10.鈥?158/鈥?940-6207.鈥婥apr-11-0412 .PubMed Central PubMed View Article
    36.Horiuchi, M., Itoh, A., Pleasure, D., Ozato, K., & Itoh, T. (2011). Cooperative contributions of Interferon regulatory factor 1 (IRF1) and IRF8 to interferon-gamma-mediated cytotoxic effects on oligodendroglial progenitor cells. Journal of Neuroinflammation, 8, Artn 8. doi:10.鈥?186/鈥?742-2094-8-8 .
    37.Hutchinson, E. (2008). Developmental block. Nature Reviews Cancer, 8(3), 160鈥?60. doi:10.鈥?038/鈥婲rc2335 .View Article
    38.Prevot, D., Voeltzel, T., Birot, A. M., Morel, A. P., Rostan, M. C., Magaud, J. P., et al. (2000). The leukemia-associated protein Btg1 and the p53-regulated protein Btg2 interact with the homeoprotein Hoxb9 and enhance its transcriptional activation. Journal of Biological Chemistry, 275(1), 147鈥?53. doi:10.鈥?074/鈥媕bc.鈥?75.鈥?.鈥?47 .PubMed View Article
    39.L贸pez-Malpartida, A. V., Lude帽a, M. D., Varela, G., & Garc铆a Pichel, J. (2009). Differential ErbB receptor expression and intracellular signaling activity in lung adenocarcinomas and squamous cell carcinomas. Lung Cancer, 65(1), 25鈥?3. doi:10.鈥?016/鈥媕.鈥媗ungcan.鈥?008.鈥?0.鈥?09 .PubMed View Article
    40.Hartman, Z., Zhao, H., & Agazie, Y. M. (2013). HER2 stabilizes EGFR and itself by altering autophosphorylation patterns in a manner that overcomes regulatory mechanisms and promotes proliferative and transformation signaling. Oncogene, 32(35), 4169鈥?180. doi:10.鈥?038/鈥婳nc.鈥?012.鈥?18 .PubMed Central PubMed View Article
    41.Spoerke, J. M., O鈥橞rien, C., Huw, L., Koeppen, H., Fridlyand, J., Brachmann, R. K., et al. (2012). Phosphoinositide 3-kinase (PI3K) pathway alterations are associated with histologic subtypes and are predictive of sensitivity to PI3K inhibitors in lung cancer preclinical models. Clinical Cancer Research, 18(24), 6771鈥?783. doi:10.鈥?158/鈥?078-0432.鈥婥cr-12-2347 .PubMed View Article
    42.Wang, J.G., Huang, Q., Liu, Z.P., Wang, Y., Wu, L.Y., Chen, L.N., et al. (2011). NOA: a novel network ontology analysis method. Nucleic Acids Research, 39(13), ARTN e87. doi:10.鈥?093/鈥媙ar/鈥媑kr251 .
    43.Perlikos, F., Harrington, K. J., & Syrigos, K. N. (2013). Key molecular mechanisms in lung cancer invasion and metastasis: a comprehensive review. Critical Reviews in Oncology Hematology, 87(1), 1鈥?1. doi:10.鈥?016/鈥媕.鈥媍ritrevonc.鈥?012.鈥?2.鈥?07 .View Article
    44.Moreno-Bueno, G., Portillo, F., & Cano, A. (2008). Transcriptional regulation of cell polarity in EMT and cancer. Oncogene, 27(55), 6958鈥?969. doi:10.鈥?038/鈥婳nc.鈥?008.鈥?46 .PubMed View Article
    45.Schimmack, S, Taylor, A Lawrence, B, Alaimo, D, Schmitz-Winnenthal, H, Buchler, M.W., et al. (2014). A mechanistic role for the chromatin modulator, NAP1L1, in pancreatic neuroendocrine neoplasm proliferation and metastases. Epigenetics & Chromatin, 7, Artn 15. doi:10.鈥?186/鈥?756-8935-7-15 .
    46.Sun, A.Q., Yu, G.Z., Dou, X.Y., Yan, X.W., Yang, W.N., & Lin, Q. (2014). Nedd4-1 is an exceptional prognostic biomarker for gastric cardia adenocarcinoma and functionally associated with metastasis. Molecular Cancer, 13, Unsp 248. doi:10.鈥?186/鈥?476-4598-13-248 .
    47.Yue, D.S., Li,H., Che, J.J., Zhang, Y., Tseng, H.H., Jin, J.Q., et al. (2014). Hedgehog/Gli promotes epithelial-mesenchymal transition in lung squamous cell carcinomas. Journal of Experimental & Clinical Cancer Research, 33, Artn 34. doi:10.鈥?186/鈥?756-9966-33-34 .
    48.Cai, P. F., Guo, W. J., Yuan, H. Q., Li, Q., Wang, W. C., Sun, Y., et al. (2014). Expression and clinical significance of tyrosine phosphatase SHP-2 in colon cancer. Biomedicine & Pharmacotherapy, 68(3), 285鈥?90. doi:10.鈥?016/鈥媕.鈥媌iopha.鈥?013.鈥?0.鈥?12 .View Article
    49.Jechlinger, M., Sommer, A., Moriggl, R., Seither, P., Kraut, N., Capodiecci, P., et al. (2006). Autocrine PDGFR signaling promotes mammary cancer metastasis. Journal of Clinical Investigation, 116(6), 1561鈥?570. doi:10.鈥?172/鈥婮c124652 .PubMed Central PubMed View Article
    50.Pegoraro, S., Ros, G., Piazza, S., Sommaggio, R., Ciani, Y., Rosato, A., et al. (2013). HMGA1 promotes metastatic processes in basal-like breast cancer regulating EMT and stemness. Oncotarget, 4(8), 1293鈥?308.PubMed Central PubMed
    51.Tan, M. Y., Gong, H., Zeng, Y. G., Tao, L., Wang, J., Jiang, J. T., et al. (2014). Downregulation of homeodomain-interacting protein kinase-2 contributes to bladder cancer metastasis by regulating Wnt signaling. Journal of Cellular Biochemistry, 115(10), 1762鈥?767. doi:10.鈥?002/鈥婮cb.鈥?4842 .PubMed View Article
    52.Zhou, F.F., Drabsch, Y., Dekker, T.J., de Vinuesa, A.G., Li, Y.H., Hawinkels, L.J.A.C., et al. (2014). Nuclear receptor NR4A1 promotes breast cancer invasion and metastasis by activating TGF-beta signalling. Nature Communications, 5, Artn 3388. doi:10.鈥?038/鈥婲comms4388 .
    53.Muller, A., Homey, B., Soto, H., Ge, N. F., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824), 50鈥?6. doi:10.鈥?038/鈥?5065016 .PubMed View Article
    54.Li, H.Y., Yang, L., Fu, H., Yan, J.S., Wang, Y., Guo, H., et al. (2013). Association between G alpha i2 and ELMO1/Dock180 connects chemokine signalling with Rac activation and metastasis. Nature Communications, 4, Artn 1706. doi:10.鈥?038/鈥婲comms2680 .
    55.Eberl, M., Klingler, S., Mangelberger, D., Loipetzberger, A., Damhofer, H., Zoidl, K., et al. (2012). Hedgehog-EGFR cooperation response genes determine the oncogenic phenotype of basal cell carcinoma and tumour-initiating pancreatic cancer cells. EMBO Molecular Medicine, 4(3), 218鈥?33. doi:10.鈥?002/鈥媏mmm.鈥?01100201 .PubMed Central PubMed View Article
    56.Kanehisa, M. (2002). The KEGG database. In Silico Simulation of Biological Processes, 247, 91鈥?03.View Article
    57.Kochetkova, M., Kumar, S., & McColl, S. R. (2009). Chemokine receptors CXCR4 and CCR7 promote metastasis by preventing anoikis in cancer cells. Cell Death and Differentiation, 16(5), 664鈥?73. doi:10.鈥?038/鈥婥dd.鈥?008.鈥?90 .PubMed View Article
    58.Stark, C., Breitkreutz, B. J., Chatr-aryamontri, A., Boucher, L., Oughtred, R., Livstone, M. S., et al. (2011). The BioGRID interaction database: 2011 update. Nucleic Acids Research, 39, D698鈥揇704. doi:10.鈥?093/鈥婲ar/鈥婫kq1116 .PubMed Central PubMed View Article
    59.Liu, B. L., & Bo, H. (2007). HPRD: a high performance RDF database. Network and Parallel Computing, Proceedings, 4672, 364鈥?74.View Article
    60.Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., Mudali, S., Kerrien, S., Orchard, S., et al. (2004). IntAct: an open source molecular interaction database. Nucleic Acids Research, 32, D452鈥揇455. doi:10.鈥?093/鈥婲ar/鈥婫kh052 .PubMed Central PubMed View Article
    61.Chatr-Aryamontri, A., Ceol, A., Palazzi, L. M., Nardelli, G., Schneider, M. V., Castagnoli, L., et al. (2007). MINT: the molecular interaction database. Nucleic Acids Research, 35, D572鈥揇574. doi:10.鈥?093/鈥婲ar/鈥婫kl950 .PubMed Central PubMed View Article
    62.Croft, D., O鈥橩elly, G., Wu, G. M., Haw, R., Gillespie, M., Matthews, L., et al. (2011). Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Research, 39, D691鈥揇697. doi:10.鈥?093/鈥婲ar/鈥婫kq1018 .PubMed Central PubMed View Article
    63.Xenarios, I., Salwinski, L., Duan, X. Q. J., Higney, P., Kim, S. M., & Eisenberg, D. (2002). DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Research, 30(1), 303鈥?05. doi:10.鈥?093/鈥婲ar/鈥?0.鈥?.鈥?03 .PubMed Central PubMed View Article
    64.Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498鈥?504. doi:10.鈥?101/鈥婫r.鈥?239303 .PubMed Central PubMed View Article
    65.Zhang, W., Zeng, T., Liu, X., Chen, L. (2015). Diagnosing phenotypes of single-sample individuals by edge biomarkers. Journal of Molecular Cell Biology. doi:10.鈥?093/鈥媕mcb/鈥媘jv025 .
    66.Zhang, X., Zhao, J., Hao, J., Zhao, X., & Chen, L. (2014). Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks. Nucleic Acids Research. doi:10.鈥?093/鈥媙ar/鈥媑ku1315 .
    67.Zeng, T., Zhang, C., Zhang, W., Liu, R., Liu, J., & Chen, L. (2014). Deciphering early development of complex diseases by progressive module network. Methods. doi:10.鈥?016/鈥媕.鈥媦meth.鈥?014.鈥?1.鈥?21 .
    68.Liu, R., Yu, X., Liu, X., Xu, D., Aihara, K., & Chen, L. (2014). Identifying critical transitions of complex diseases based on a single sample. Bioinformatics. doi:10.鈥?093/鈥媌ioinformatics/鈥媌tu084 .View Article
    69.Zeng, T., Sun, S., Wang, Y., Zhu, H., & Chen, L. (2013). Network biomarkers reveal dysfunctional gene regulations during disease progression. FEBS Journal. doi:10.鈥?111/鈥媐ebs.鈥?2536 .PubMed Central
  • 作者单位:Qianqian Shi (1)
    Xiaoping Liu (1)
    Tao Zeng (1)
    William Wang (2)
    Luonan Chen (1) (3)

    1. Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
    2. Department of Biomedical Science, University College of London, London, UK
    3. School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Oncology
    Cancer Research
  • 出版者:Springer Netherlands
  • ISSN:1573-7233
文摘
Systematic identification of causal disease genes can shed light on the mechanisms underlying complex diseases and provide crucial information to develop efficient biomarkers or design suitable therapies. The present paper describes a novel approach to detect potential disease genes for lung cancer, based on consistently differential interaction (CDI) scheme from heterogeneous disease datasets. In particular, reliable disordered regulations in disease states were discovered by identifying the CDIs, from which the disease genes were further detected based on their topological structures on the network. As an application of the CDI-based method, the RNA-seq data of two subtypes of non-small lung cancer were used to identify CDIs from normal to cancer onset. The results of analysis well agree with the prior knowledge as well as the experiments, thereby implying the predictive power of the CDI-based method. The comparison with other approaches also indicated the superiority of the CDI-based method in terms of accuracy and effectiveness on detecting disease-specific genes for lung cancer and metastasis. In contrast to conventional molecular biomarkers, the identified CDIs as novel network biomarkers or edge biomarkers can be applied to predict patient survival for both subtypes of lung cancers, and the interactions among CDIs can be further used as new edgetic targets for network drug design. In addition, a potential molecular mechanism was developed to explain the key roles of the identified CDIs in lung cancer and metastasis from a network perspective.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700