Gene Expression Profile of NF-κB, Nrf2, Glycolytic, and p53 Pathways During the SH-SY5Y Neuronal Differentiation Mediated by Retinoic Acid
详细信息    查看全文
  • 作者:Matheus Augusto de Bittencourt Pasquali ; Vitor Miranda de Ramos…
  • 关键词:Neuronal differentiation ; Neuroblastoma ; Retinoic acid ; SH ; SY5Y cells ; Oxidative stress
  • 刊名:Molecular Neurobiology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:53
  • 期:1
  • 页码:423-435
  • 全文大小:1,638 KB
  • 参考文献:1.Fineberg SK, Kosik KS, Davidson BL (2009) MicroRNAs potentiate neural development. Neuron 64(3):303–309. doi:10.​1016/​j.​neuron.​2009.​10.​020 CrossRef PubMed
    2.Chen X, Du Z, Shi W, Wang C, Yang Y, Wang F, Yao Y, He K, Hao A (2013) 2-Bromopalmitate modulates neuronal differentiation through the regulation of histone acetylation. Stem Cell Res 12(2):481–491. doi:10.​1016/​j.​scr.​2013.​12.​010 CrossRef PubMed
    3.Hadjal Y, Hadadeh O, Yazidi CE, Barruet E, Binetruy B (2013) A p38MAPK-p53 cascade regulates mesodermal differentiation and neurogenesis of embryonic stem cells. Cell Death Dis 4:e737. doi:10.​1038/​cddis.​2013.​246 CrossRef PubMed PubMedCentral
    4.Zhao F, Wu T, Lau A, Jiang T, Huang Z, Wang XJ, Chen W, Wong PK, Zhang DD (2009) Nrf2 promotes neuronal cell differentiation. Free Radic Biol Med 47(6):867–879. doi:10.​1016/​j.​freeradbiomed.​2009.​06.​029 CrossRef PubMed PubMedCentral
    5.de Bittencourt Pasquali MA, Gelain DP, Zeidan-Chulia F, Pires AS, Gasparotto J, Terra SR, Moreira JC (2013) Vitamin A (retinol) downregulates the receptor for advanced glycation endproducts (RAGE) by oxidant-dependent activation of p38 MAPK and NF-kB in human lung cancer A549 cells. Cell Signal 25(4):939–954. doi:10.​1016/​j.​cellsig.​2013.​01.​013 CrossRef PubMed
    6.Salminen A, Kauppinen A, Kaarniranta K (2012) Phytochemicals suppress nuclear factor-kappaB signaling: impact on health span and the aging process. Curr Opin Clin Nutr Metab Care 15(1):23–28. doi:10.​1097/​MCO.​0b013e32834d3ae7​ CrossRef PubMed
    7.Bhakar AL, Tannis LL, Zeindler C, Russo MP, Jobin C, Park DS, MacPherson S, Barker PA (2002) Constitutive nuclear factor-kappa B activity is required for central neuron survival. J Neurosci 22(19):8466–8475PubMed
    8.O'Neill LA, Kaltschmidt C (1997) NF-kappa B: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci 20(6):252–258CrossRef PubMed
    9.Kaltschmidt B, Sparna T, Kaltschmidt C (1999) Activation of NF-kappa B by reactive oxygen intermediates in the nervous system. Antioxid Redox Signal 1(2):129–144CrossRef PubMed
    10.Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358(6381):15–16. doi:10.​1038/​358015a0 CrossRef PubMed
    11.Mukhopadhyay UK, Mak AS (2009) p53: is the guardian of the genome also a suppressor of cell invasion? Cell Cycle 8(16):2481CrossRef PubMed
    12.Gaub P, Tedeschi A, Puttagunta R, Nguyen T, Schmandke A, Di Giovanni S (2010) HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ 17(9):1392–1408. doi:10.​1038/​cdd.​2009.​216 CrossRef PubMed
    13.Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75(5):762–777. doi:10.​1016/​j.​neuron.​2012.​08.​019 CrossRef PubMed
    14.Campanucci V, Krishnaswamy A, Cooper E (2010) Diabetes depresses synaptic transmission in sympathetic ganglia by inactivating nAChRs through a conserved intracellular cysteine residue. Neuron 66(6):827–834. doi:10.​1016/​j.​neuron.​2010.​06.​010 CrossRef PubMed
    15.Gutteridge JM, Halliwell B (2000) Free radicals and antioxidants in the year 2000. A historical look to the future. Ann N Y Acad Sci 899:136–147CrossRef PubMed
    16.Wang B, Zhu X, Kim Y, Li J, Huang S, Saleem S, Li RC, Xu Y, Dore S, Cao W (2012) Histone deacetylase inhibition activates transcription factor Nrf2 and protects against cerebral ischemic damage. Free Radic Biol Med 52(5):928–936. doi:10.​1016/​j.​freeradbiomed.​2011.​12.​006 CrossRef PubMed
    17.Yan W, Wang HD, Hu ZG, Wang QF, Yin HX (2008) Activation of Nrf2-ARE pathway in brain after traumatic brain injury. Neurosci Lett 431(2):150–154. doi:10.​1016/​j.​neulet.​2007.​11.​060 CrossRef PubMed
    18.Ramsey CP, Glass CA, Montgomery MB, Lindl KA, Ritson GP, Chia LA, Hamilton RL, Chu CT, Jordan-Sciutto KL (2007) Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol 66(1):75–85. doi:10.​1097/​nen.​0b013e31802d6da9​ CrossRef PubMed PubMedCentral
    19.da Frota Junior ML, Pires AS, Zeidan-Chulia F, Bristot IJ, Lopes FM, de Bittencourt Pasquali MA, Zanotto-Filho A, Behr GA, Klamt F, Gelain DP, Moreira JC (2011) In vitro optimization of retinoic acid-induced neuritogenesis and TH endogenous expression in human SH-SY5Y neuroblastoma cells by the antioxidant Trolox. Mol Cell Biochem 358(1–2):325–334. doi:10.​1007/​s11010-011-0983-2 CrossRef PubMed
    20.Albanus RD, Juliani Siqueira Dalmolin R, Alves Castro MA, Augusto de Bittencourt Pasquali M, de Miranda Ramos V, Pens Gelain D, Fonseca Moreira JC (2013) Reverse engineering the neuroblastoma regulatory network uncovers MAX as One of the master regulators of tumor progression. PLoS One 8(12):e82457CrossRef PubMed PubMedCentral
    21.Xun Z, Lee DY, Lim J, Canaria CA, Barnebey A, Yanonne SM, McMurray CT (2012) Retinoic acid-induced differentiation increases the rate of oxygen consumption and enhances the spare respiratory capacity of mitochondria in SH-SY5Y cells. Mech Ageing Dev 133(4):176–185. doi:10.​1016/​j.​mad.​2012.​01.​008 CrossRef PubMed PubMedCentral
    22.Castro MA, Filho JL, Dalmolin RJ, Sinigaglia M, Moreira JC, Mombach JC, de Almeida RM (2009) ViaComplex: software for landscape analysis of gene expression networks in genomic context. Bioinformatics 25(11):1468–1469. doi:10.​1093/​bioinformatics/​btp246 CrossRef PubMed
    23.von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P (2005) STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res 33:D433–D437. doi:10.​1093/​nar/​gki005 , Database issueCrossRef
    24.Birney E, Andrews D, Caccamo M, Chen Y, Clarke L, Coates G, Cox T, Cunningham F, Curwen V, Cutts T, Down T, Durbin R, Fernandez-Suarez XM, Flicek P, Graf S, Hammond M, Herrero J, Howe K, Iyer V, Jekosch K, Kahari A, Kasprzyk A, Keefe D, Kokocinski F, Kulesha E, London D, Longden I, Melsopp C, Meidl P, Overduin B, Parker A, Proctor G, Prlic A, Rae M, Rios D, Redmond S, Schuster M, Sealy I, Searle S, Severin J, Slater G, Smedley D, Smith J, Stabenau A, Stalker J, Trevanion S, Ureta-Vidal A, Vogel J, White S, Woodwark C, Hubbard TJ (2006) Ensembl. Nucleic Acids Res 34:D556–D561. doi:10.​1093/​nar/​gkj133 , Database issueCrossRef PubMed PubMedCentral
    25.Hooper SD, Bork P (2005) Medusa: a simple tool for interaction graph analysis. Bioinformatics 21(24):4432–4433. doi:10.​1093/​bioinformatics/​bti696 CrossRef PubMed
    26.Iyengar BR, Choudhary A, Sarangdhar MA, Venkatesh KV, Gadgil CJ, Pillai B (2014) Non-coding RNA interact to regulate neuronal development and function. Front Cell Neurosci 8:47. doi:10.​3389/​fncel.​2014.​00047 CrossRef PubMed PubMedCentral
    27.Biedler JL, Helson L, Spengler BA (1973) Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res 33(11):2643–2652PubMed
    28.Mattson MP (2005) NF-kappaB in the survival and plasticity of neurons. Neurochem Res 30(6–7):883–893. doi:10.​1007/​s11064-005-6961-x CrossRef PubMed
    29.Casaccia-Bonnefil P, Carter BD, Dobrowsky RT, Chao MV (1996) Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature 383(6602):716–719. doi:10.​1038/​383716a0 CrossRef PubMed
    30.Carter BD, Kaltschmidt C, Kaltschmidt B, Offenhauser N, Bohm-Matthaei R, Baeuerle PA, Barde YA (1996) Selective activation of NF-kappa B by nerve growth factor through the neurotrophin receptor p75. Science 272(5261):542–545CrossRef PubMed
    31.Burke MA, Bothwell M (2003) p75 neurotrophin receptor mediates neurotrophin activation of NF-kappa B and induction of iNOS expression in P19 neurons. J Neurobiol 55(2):191–203. doi:10.​1002/​neu.​10174 CrossRef PubMed
    32.Heissmeyer V, Krappmann D, Wulczyn FG, Scheidereit C (1999) NF-kappaB p105 is a target of IkappaB kinases and controls signal induction of Bcl-3-p50 complexes. EMBO J 18(17):4766–4778. doi:10.​1093/​emboj/​18.​17.​4766 CrossRef PubMed PubMedCentral
    33.Dechend R, Hirano F, Lehmann K, Heissmeyer V, Ansieau S, Wulczyn FG, Scheidereit C, Leutz A (1999) The Bcl-3 oncoprotein acts as a bridging factor between NF-kappaB/Rel and nuclear co-regulators. Oncogene 18(22):3316–3323. doi:10.​1038/​sj.​onc.​1202717 CrossRef PubMed
    34.Gallagher D, Gutierrez H, Gavalda N, O'Keeffe G, Hay R, Davies AM (2007) Nuclear factor-kappaB activation via tyrosine phosphorylation of inhibitor kappaB-alpha is crucial for ciliary neurotrophic factor-promoted neurite growth from developing neurons. J Neurosci 27(36):9664–9669. doi:10.​1523/​JNEUROSCI.​0608-07.​2007 CrossRef PubMed PubMedCentral
    35.Dienel GA (2012) Fueling and imaging brain activation. ASN Neuro 4 (5). doi:10.​1042/​AN20120021 , e00093 [pii], AN20120021 [pii]
    36.Cabrera-Valladares G, German MS, Matschinsky FM, Wang J, Fernandez-Mejia C (1999) Effect of retinoic acid on glucokinase activity and gene expression and on insulin secretion in primary cultures of pancreatic islets. Endocrinology 140(7):3091–3096. doi:10.​1210/​endo.​140.​7.​6765 PubMed
    37.Lin YW, Lien LM, Yeh TS, Wu HM, Liu YL, Hsieh RH (2008) 9-cis retinoic acid induces retinoid X receptor localized to the mitochondria for mediation of mitochondrial transcription. Biochem Biophys Res Commun 377(2):351–354. doi:10.​1016/​j.​bbrc.​2008.​09.​122 CrossRef PubMed
    38.Truckenmiller ME, Vawter MP, Cheadle C, Coggiano M, Donovan DM, Freed WJ, Becker KG (2001) Gene expression profile in early stage of retinoic acid-induced differentiation of human SH-SY5Y neuroblastoma cells. Restor Neurol Neurosci 18(2–3):67–80PubMed
    39.Pasquali MA, Gelain DP, Zanotto-Filho A, de Souza LF, de Oliveira RB, Klamt F, Moreira JC (2008) Retinol and retinoic acid modulate catalase activity in Sertoli cells by distinct and gene expression-independent mechanisms. Toxicol In Vitro 22(5):1177–1183. doi:10.​1016/​j.​tiv.​2008.​03.​007 CrossRef PubMed
    40.Gelain DP, de Bittencourt Pasquali MA, Caregnato FF, Zanotto-Filho A, Moreira JC (2008) Retinol up-regulates the receptor for advanced glycation endproducts (RAGE) by increasing intracellular reactive species. Toxicol In Vitro 22(5):1123–1127. doi:10.​1016/​j.​tiv.​2008.​02.​016 CrossRef PubMed
    41.Gelain DP, de Bittencourt Pasquali MA, Zanotto-Filho A, de Souza LF, de Oliveira RB, Klamt F, Moreira JC (2008) Retinol increases catalase activity and protein content by a reactive species-dependent mechanism in Sertoli cells. Chem Biol Interact 174(1):38–43. doi:10.​1016/​j.​cbi.​2008.​04.​025 CrossRef PubMed
    42.Zanotto-Filho A, Cammarota M, Gelain DP, Oliveira RB, Delgado-Canedo A, Dalmolin RJ, Pasquali MA, Moreira JC (2008) Retinoic acid induces apoptosis by a non-classical mechanism of ERK1/2 activation. Toxicol In Vitro 22(5):1205–1212. doi:10.​1016/​j.​tiv.​2008.​04.​001 CrossRef PubMed
    43.Pasquali MA, Gelain DP, Oliveira MR, Behr GA, Motta LL, Rocha RF, Klamt F, Moreira JC (2009) Vitamin A supplementation induces oxidative stress and decreases the immunocontent of catalase and superoxide dismutase in rat lungs. Exp Lung Res 35(5):427–438. doi:10.​1080/​0190214090274743​6 CrossRef PubMed
    44.Pasquali MA, Gelain DP, de Oliveira MR, Behr GA, da Motta LL, da Rocha RF, Klamt F, Moreira JC (2009) Vitamin A supplementation for different periods alters oxidative parameters in lungs of rats. J Med Food 12(6):1375–1380. doi:10.​1089/​jmf.​2008.​0298 CrossRef PubMed
    45.Pasquali MA, Schnorr CE, Feistauer LB, Gelain DP, Moreira JC (2010) Vitamin A supplementation to pregnant and breastfeeding female rats induces oxidative stress in the neonatal lung. Reprod Toxicol 30(3):452–456. doi:10.​1016/​j.​reprotox.​2010.​05.​085 CrossRef PubMed
    46.de Bittencourt Pasquali MA, Roberto de Oliveira M, De Bastiani MA, da Rocha RF, Schnorr CE, Gasparotto J, Gelain DP, Moreira JC (2012) k-NAME co-treatment prevent oxidative damage in the lung of adult Wistar rats treated with vitamin A supplementation. Cell Biochem Funct 30(3):256–263CrossRef PubMed
    47.Auten RL, O'Reilly MA, Oury TD, Nozik-Grayck E, Whorton MH (2006) Transgenic extracellular superoxide dismutase protects postnatal alveolar epithelial proliferation and development during hyperoxia. Am J Physiol Lung Cell Mol Physiol 290(1):L32–L40. doi:10.​1152/​ajplung.​00133.​2005 CrossRef PubMed PubMedCentral
    48.Dong A, Shen J, Krause M, Akiyama H, Hackett SF, Lai H, Campochiaro PA (2006) Superoxide dismutase 1 protects retinal cells from oxidative damage. J Cell Physiol 208(3):516–526. doi:10.​1002/​jcp.​20683 CrossRef PubMed
    49.Holtzclaw WD, Dinkova-Kostova AT, Talalay P (2004) Protection against electrophile and oxidative stress by induction of phase 2 genes: the quest for the elusive sensor that responds to inducers. Adv Enzyme Regul 44:335–367. doi:10.​1016/​j.​advenzreg.​2003.​11.​013 CrossRef PubMed
    50.Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284(20):13291–13295. doi:10.​1074/​jbc.​R900010200 CrossRef PubMed PubMedCentral
    51.Miao W, Hu L, Scrivens PJ, Batist G (2005) Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: direct cross-talk between phase I and II drug-metabolizing enzymes. J Biol Chem 280(21):20340–20348. doi:10.​1074/​jbc.​M412081200 CrossRef PubMed
    52.Lau A, Villeneuve NF, Sun Z, Wong PK, Zhang DD (2008) Dual roles of Nrf2 in cancer. Pharmacol Res 58(5–6):262–270. doi:10.​1016/​j.​phrs.​2008.​09.​003 CrossRef PubMed PubMedCentral
    53.Niture SK, Khatri R, Jaiswal AK (2014) Regulation of Nrf2-an update. Free Radic Biol Med 66:36–44. doi:10.​1016/​j.​freeradbiomed.​2013.​02.​008 CrossRef PubMed
    54.Chen KF, Chen HL, Tai WT, Feng WC, Hsu CH, Chen PJ, Cheng AL (2011) Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. J Pharmacol Exp Ther 337(1):155–161. doi:10.​1124/​jpet.​110.​175786 CrossRef PubMed
    55.Lopez-Carballo G, Moreno L, Masia S, Perez P, Barettino D (2002) Activation of the phosphatidylinositol 3-kinase/Akt signaling pathway by retinoic acid is required for neural differentiation of SH-SY5Y human neuroblastoma cells. J Biol Chem 277(28):25297–25304. doi:10.​1074/​jbc.​M201869200 CrossRef PubMed
    56.Vanlandingham JW, Tassabehji NM, Somers RC, Levenson CW (2005) Expression profiling of p53-target genes in copper-mediated neuronal apoptosis. Neuromolecular Med 7(4):311–324. doi:10.​1385/​NMM:​7:​4:​311 CrossRef PubMed
    57.Culmsee C, Mattson MP (2005) p53 in neuronal apoptosis. Biochem Biophys Res Commun 331(3):761–777. doi:10.​1016/​j.​bbrc.​2005.​03.​149 CrossRef PubMed
    58.Nagao M, Campbell K, Burns K, Kuan CY, Trumpp A, Nakafuku M (2008) Coordinated control of self-renewal and differentiation of neural stem cells by Myc and the p19ARF-p53 pathway. J Cell Biol 183(7):1243–1257. doi:10.​1083/​jcb.​200807130, jcb.​200807130 CrossRef PubMed PubMedCentral
    59.Meletis K, Wirta V, Hede SM, Nister M, Lundeberg J, Frisen J (2006) p53 suppresses the self-renewal of adult neural stem cells. Development 133(2):363–369. doi:10.​1242/​dev.​02208 CrossRef PubMed
    60.Xavier JM, Morgado AL, Sola S, Rodrigues CM (2014) Mitochondrial translocation of p53 modulates neuronal fate by preventing differentiation-induced mitochondrial stress. Antioxid Redox Signal. doi:10.​1089/​ars.​2013.​5417 PubMed PubMedCentral
  • 作者单位:Matheus Augusto de Bittencourt Pasquali (1) (2)
    Vitor Miranda de Ramos (1)
    Ricardo D′Oliveira Albanus (1)
    Alice Kunzler (1)
    Luis Henrinque Trentin de Souza (1)
    Rodrigo Juliani Siqueira Dalmolin (2)
    Daniel Pens Gelain (1)
    Leila Ribeiro (3)
    Luigi Carro (3)
    José Cláudio Fonseca Moreira (1)

    1. Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Universidade Federal do Rio Grande do Sul—UFRGS, Rua Ramiro Barcelos 2600, Cep 90035-003, Porto Alegre, Rio Grande do Sul, Brazil
    2. Departamento de Bioquímica, Instituto de Medicina Tropical, Universidade Federal do Rio Grande do Norte—UFRN, Avenida Senador Salgado Filho 3000, Cep 59078-900, Natal, Rio Grande do Norte, Brazil
    3. Departamento de Informática Aplicada, Universidade Federal do Rio Grande do Sul—UFRGS, Rua Bento Gonçalves 9500, Cep 91501-970, Porto Alegre, Rio Grande do Sul, Brazil
  • 刊物主题:Neurosciences; Neurobiology; Cell Biology; Neurology;
  • 出版者:Springer US
  • ISSN:1559-1182
文摘
SH-SY5Y cells, a neuroblastoma cell line that is a well-established model system to study the initial phases of neuronal differentiation, have been used in studies to elucidate the mechanisms of neuronal differentiation. In the present study, we investigated alterations of gene expression in SH-SY5Y cells during neuronal differentiation mediated by retinoic acid (RA) treatment. We evaluated important pathways involving nuclear factor kappa B (NF-κB), nuclear E2-related factor 2 (Nrf2), glycolytic, and p53 during neuronal differentiation. We also investigated the involvement of reactive oxygen species (ROS) in modulating the gene expression profile of those pathways by antioxidant co-treatment with Trolox®, a hydrophilic analogue of α-tocopherol. We found that RA treatment increases levels of gene expression of NF-κB, glycolytic, and antioxidant pathway genes during neuronal differentiation of SH-SY5Y cells. We also found that ROS production induced by RA treatment in SH-SY5Y cells is involved in gene expression profile alterations, chiefly in NF-κB, and glycolytic pathways. Antioxidant co-treatment with Trolox® reversed the effects mediated by RA NF-κB, and glycolytic pathways gene expression. Interestingly, co-treatment with Trolox® did not reverse the effects in antioxidant gene expression mediated by RA in SH-SY5Y. To confirm neuronal differentiation, we quantified endogenous levels of tyrosine hydroxylase, a recognized marker of neuronal differentiation. Our data suggest that during neuronal differentiation mediated by RA, changes in profile gene expression of important pathways occur. These alterations are in part mediated by ROS production. Therefore, our results reinforce the importance in understanding the mechanism by which RA induces neuronal differentiation in SH-SY5Y cells, principally due this model being commonly used as a neuronal cell model in studies of neuronal pathologies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700